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Chapter 2 
 

 
 
 

INVERSE PROBLEMS 
AND ERROR MINIMISATION 

 
 
 
 
2.1 A Copernican revolution: direct and inverse problems 
 
In engineering science, direct problems are defined as those where, given 
the input or the cause of a phenomenon or of a process in a device, the 
purpose is that of finding the output or the effect. 
Inverse problems, conversely, are those where, given the measured or 
expected output or effect, one wants to determine the input or the cause; 
moreover, inverse problems are also those where, given the input and the 
corresponding output, one tries to understand their interconnection. 
The two types of problems, when applied to the same phenomenon or 
process, represent the two logical ways of conceiving it: from input to 
output or the other way round. The latter way is central for design. 
In applied electromagnetics, inverse problems may appear in two forms: 

i) given measured data, which may be affected by noise or error, in 
a field region, to identify or recover the relevant field sources or 
material properties or boundary conditions of the region 
(identification or parameter-estimation problems); 

ii) given desired fields in a device, or given the device performance 
based on them, to determine, or design, sources or materials or 
shape of the device, producing the specified performance 
(synthesis or optimal design problems). 

In particular, optimal design problems, which are very popular in all 
branches of engineering, belong to a group of inverse problems where the 
purpose is to design a device which can provide a prescribed behaviour or 
an optimal performance. If optimal design problems should be solved only 
by means of a trial-and-error approach, it would not be possible to know 
something a priori about their solution, which would rely just on the 
designer experience and intuition. On the contrary, the study of inverse 
problems puts the ground for a systematic approach to the design.  
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2.2 Insidiousness of inverse problems 
 
Despite the historical background summarized in the previous Section, the 
greater part of engineering science is dominated by direct problems, i.e. 
problems that can be characterized as those in which exactly enough 
information is provided to carry out a unique solution. A general description 
of direct problems may be described as follows: let x, y and A symbolyze 
the input, the output and the operator modelling the input-to-output 
transformation, respectively. Then, the direct problem is to find Ax, i.e. the 
value of the given operator at a point in its domain. Assuming that the 
operator A is invertible, the inverse problem for A is the direct problem for 

 ; if A is not invertible, the solution of the inverse problem does not 
exist. 

1A−

On the other hand, if operator A represents a function, then for any given 
input x in its domain, a unique output y is determined: in other words, the 
direct problem has a unique solution. There is no guarantee, however, that 
the inverse problem A-1y has a unique solution:  might be equal to 

 even if y
1

1yA−

2
1yA−

1 and y2 are different. 
Moreover, if the operator A is continuous in some sense, then the solution of 
the direct problem is stable with respect to small changes in the input, i.e. 

y
dy is small if 

x
dx  is small. Even when the operator has a well-defined 

inverse A-1, so that the inverse problem is uniquely solvable, there is no 
guarantee that its solution is stable against small changes dy; the inverse 
operator may, in fact, be discontinuous. 
From the mathematical viewpoint, following the Hadamard’s definition, 
well-posed problems (or properly, correctly posed problems) are those for 
which: 

i) a solution always exists; 
ii) there is only one solution; 
iii) a small change of data leads to a small change in the solution. 

The last property implies that the solution depends continuously upon the 
data, which often are measured quantities and therefore are affected by noise 
or error. 
Ill-posed problems, instead, are those for which: 

i) a solution may not exist; 
ii) there may be more than one solution; 
iii) a small change of data may lead to a big change in the solution. 
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2.3 Classification of inverse problems 
 
There are many ways to classify inverse problems. The formulation of 
inverse problems in electricity and magnetism implies to associate a 
procedure for field computation (direct problem) and a procedure for the 
solution of the inverse problem. Therefore, a classification can be based on 
the approach for field computation (integral or differential, analytical or 
numerical). Another classification can be made, according to the 
formulation of the inverse problem and the relevant mathematical method 
employed for the solution; this viewpoint will be developed later. 
When the given data come from measurements and the parameters 
governing field equations, including material properties, are to be found, 
one speaks of identification problems. 
Otherwise, when the given data are arbitrarily taken and the field source or 
specifications of the field region (e.g. boundary conditions) are required, the 
problem is called a synthesis problem. 
In engineering applications, often, the goal is to design the geometry of a 
device so that a prescribed performance of the device, depending on the 
field, is obtained. This kind of problem is commonly defined as optimal 
shape design problem. 
The ultimate goal of the problem is to perform an Automated Optimal 
Design (AOD), when the solution is obtained automatically in terms of the 
required or best performance. 
About ill-posed problems, the following remark can be put forward. 
Identification problems have always a solution at least, while a solution may 
not exist for optimal design problems; this happens when e.g. the prescribed 
quantity does not fit with data. On the contrary, if multiple solutions exist to 
a given problem, they may differ by e.g. a degree of smoothness or 
exactness. 



P. Di Barba, Lecture Notes on Inverse Problems in Electromagnetism 

 
2.4 Green’s formula and Fredholm’s equation  
 
In field theory, using an integral approach (e.g. Green’s function method, 
moment method), equations of the type: 

( ) ( ) ( ) 10 y,x,dyyfy,xKxg
1

Ω∈Ω∈= ∫
Ω

   (2.1) 

where Ω0 is the field domain and Ω1 is the source domain, are frequently 
dealt with.  
When f is given, g is the unknown and K is the known kernel, the problem 
of finding g is a direct problem. In a sense, (2.1) is nothing but the Green’s 
formula of magnetostatics in an unbounded domain. 
In turn, when g is given, f is the unknown and K is the known kernel, the 
problem of finding f is an inverse problem. In this case, (2.1) is called 
Fredholm’s equation of the first kind. 
Normally, kernel K is assumed to be bounded, i.e. a constant  exists 
such that 

0p >
( ) py,xK ≤ , and symmetrical, i.e. ( ) ( )x,yKy,xK = . It can be 

shown that f does not depend continuously upon the given function g. 
Therefore, Fredholm’s equation gives origin to an ill-posed problem. An 
example dealing with magnetic field is now presented; a few relationships 
between field and potential, which will be developed in Chapter 4, are here 
anticipated. 
 
 
2.3.1 Case studies 
 
i) Analysis of a known current distribution producing a magnetic field 
 
Given a system of rectangular coordinates, let a two-dimensional 
unbounded domain, which is supposed to be homogeneous and free of 
ferromagnetic material, be considered. The problem is that of determining 
the induction field ( y,xB ) produced in a subregion 0Ω  , defined by 

 and 21 x α≤≤α 21 y β≤≤β  (Fig. 2.1) due to  a direct current, flowing 
along a z-directed conductor in air and distributed with density  in a 

subregion , defined by 

( 'y,'xJ )

1Ω 2
a'x

2
a

≤≤−  and 
2
b'y

2
b

≤≤− . 
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Fig. 2.1 – Current-carrying conductor Ω1 producing a field in Ω0 . 

 
 
The vector potential A [Wbm-1], parallel to J [Am-2], due to the current-
carrying conductor of rectangular cross-section, centred at the origin and 
having width a and height b, has amplitude given by 

( ) ( ) ( ) ( ) 'dx'dy'y,'xJ'yy'xxln
4

y,xA
2
a

2
a

2
b

2
b

220 ∫ ∫
− −

−+−
π

μ
=   (2.2) 

where ( ) ( ) 10 'y,'x,y,x Ω∈Ω∈  and 0μ  is the material permeability. It can 

be  noted that in (2.2) the kernel ( ) ( ) ( )2'yy'xxln
2

y,xK −+−
π

= 21  is 

equal to the Green’s function in an unbounded two-dimensional domain. 

From the physical point of view, dIK
2
0μ  is the magnetic potential of a 

filamentary conductor carrying current 'dy'dxJdI = . After integrating (2.2), 
and so recovering the effect of the finite cross-section of the actual 

conductor, the field is given by ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

μ= −
x
A,

y
Ay,xB 1

0 . 

α1 α2

β1

β2

Ω0

a/2 -a/2 

(x,y) 

(x’,y’) Ω1

-b/2 

b/2 
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ii) Synthesis of a current distribution producing a known magnetic field  
 
Under the same assumptions as in the previous case study, the problem is 

that of identifying the density ( )'y,'xJ  with 
2
a'x

2
a

≤≤−  and 
2
b'y

2
b

≤≤−  of 

the direct current flowing along a z-directed conductor in air, such that the 
magnetic field produced in a sub-region 0Ω  , defined by 21 x α≤≤α  and 

 (Fig. 2.1) , is equal to a prescribed value. 21 y β≤≤β

Again, the vector potential is given by (2.2); if induction ( )y,xB0  [Wbm-2] 
is prescribed in , one can get the corresponding potential A by 

integrating the relationships 

0Ω

y
ABx ∂
∂

=  and 
x
ABy ∂
∂

−= . Therefore, equation 

(2.2), the left-hand side of which is assumed to be known, becomes a 
Fredholm’s equation of the first kind in the unknown ( )'y,'xJ . The solution 
can be arranged by a numerical technique. 
As far as the sensitivity against small changes in the input is concerned, the 
kernel gradient gives: 

( ) ( ) ( ) ( )
=

−+−−+−π

−
=

∂
∂

2222 'yy'xxln'yy'xx2

'xx
x
K     

K22Ke4
'xx
ππ

−
=        (2.4) 

and 

( ) ( ) ( ) ( )
=

−+−−+−π

−
=

∂
∂

2222 'yy'xxln'yy'xx2

'yy
y
K    

K22Ke4
'yy
ππ

−
=        (2.5) 

respectively, which can be regarded as components of the error 
amplification. 
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2.5 Solving inverse problems by minimising a functional 
 
In general, the unknowns x of an inverse problem are called design 
variables. They are real values, although in some cases they are integer, 
belonging to a feasible region . In multivariate problems, nvnR⊆Ω v > 1. 
The design variables may be geometric coordinates of the field region or 
values of sources or parameters characterizing the region. 
The solution of the inverse problem is generally performed by means of the 
minimisation of a suitable function f(x) called objective function or cost 
function or design criterion: 

given         vn
0 Rx ⊆Ω∈

find ( ) vn
x

Rx,xfinf ⊆Ω∈    (2.6) 

where x0 is the initial guess. Properly speaking, (2.6) is a problem of 
unconstrained optimisation; for (2.6) to be meaningful, it is assumed that f is 
bounded in Ω. 
This function may represent some performance depending on the field, or 
simply the residual between computed and known field values (error 
functional). In the second case study of Section 2.3.1, for instance, a suitable 
functional to be minimised is the norm of the discrepancy between actual 
and prescribed magnetic induction in region Ω0 ,  depending on the specific 
current J in region Ω1 , i.e. ( )( ) ( )y,xB'y,'xJ,y,xB 0−  with ( ) 0y,x Ω∈  and 

. ( ) 1'y,'x Ω∈
In general, the objective function f, which depends on the field, is not 
known analytically. Consequently, the classical conditions of minimality for 
unconstrained problems (i.e. null gradient and positive-definite Hessian 
matrix) cannot be applied a priori, because the objective function is known 
only numerically as a set of values at sample points. Moreover, f might be 
neither convex nor differentiable or smooth: therefore, it is not guaranteed 
to get solutions; in particular, f might exhibit some local minima in addition 
to the global one. Any way, a solution to (2.6) can be obtained numerically 
and the procedure may be troublesome and time-consuming. 
 
The numerical solution of inverse problems in electromagnetics require, as a 
rule, a routine for calculating the field, which is integrated with a routine 
minimising the objective function. 
Usually, the device or system to be optimised is represented by a finite-
element model in two or three dimensions. The main flow of the 
computation is driven by the minimisation routine, which in the simplest 
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way is carried out step by step. Starting from x0 , an iterative procedure 
updates the current design point xk as 

kk1k sxx α+=+     (2.7) 

where k is the iteration index, α is a scalar displacement and sk is the current 
search direction within the feasible region. Given xk+1 , the routine of field 
analysis generates a new finite-element grid, the field simulation is restarted 
and the evaluation of f(x) is so updated. 
At the end of computation, the result could represent either a local minimum 
or a saddle point or simply a point better than the initial one because f has 
decreased; in the latter case, a mere improvement (and not the optimisation) 
of f has been achieved. In general, the optimisation trajectory can converge 
to different local minima, depending on the initial point, and the global 
optimum cannot be derived from the local behaviour of the objective 
function. 
 
 
2.6 Constrained minimisation 
 
In a more advanced formulation, the objective function should fulfil 
constraints, which may be expressed as inequalities, equalities and side 
bounds. Formally, the problem can be stated as follows: 

given       (2.8) vn
0 Rx ⊆Ω∈

find ( ) vn
x

Rx,xfinf ⊆Ω∈  

subject to        

( ) ii n,...,1i0xg =≤     (2.9) 

( ) ej n,...,1j0xh ==     (2.10) 

vkkk n,...,1kux =≤≤l    (2.11) 

Constraints and bounds set the boundary of the feasible region Ω and define 
implicitly its shape in the nv-dimensional design space. 
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2.6.1 Classical optimality conditions 
 
The Lagrangian function L associated to the constrained optimisation 
problem (2.8)-(2.11) is defined by 

( ) ( ) ( ) ( )∑∑
==
λ+λ+=λ

ei n

1j
jj

n

1i
ii xhxgxf,xL    (2.12) 

where  are called Lagrange’s multipliers. Classical optimality dictates a 
first-order necessary condition (Kuhn-Tucker theorem): let 

iλ
x~  be a local 

minimum point for problem (2.8)-(2.11) and let f, gi , hi differentiable 
functions. Then, there exists a vector ei nn~ +ℜ∈λ  of (unknown) multipliers 
such that ( )λ~,x~L  is steady, namely 

( ) ( ) ( ) ( ) 0x~h~x~g~x~f~,x~L
ei n

1i
jj

n

1i
iix =∇λ+∇λ+∇=λ∇ ∑∑

==
  (2.13) 

and, in addition,  

( ) ii n,...,1i,0x~g =≤     (2.14) 

( ) ej n,...,1j,0x~h ==     (2.15) 

( ) iii n,...,1i,0x~g~
==λ     (2.16) 

ii n,...,1i,0~
=≥λ      (2.17) 

Condition (2.16) implies that, if the i-th inequality is not active (i.e. 
( ) 0x~gi < ), then the corresponding multiplier must be zero, and, conversely, 

if 0~
i >λ , then the corresponding inequality must be active (i.e. ). ( ) 0x~gi =

It can be proven that (2.13) is a sufficient condition for to x~  be a global 
minimum point if f(x), g(x), h(x) are convex functions. 
Despite the greatest theoretical importance of the aforementioned results, 
often their practical significance is modest. In computational 
electromagnetism, in fact, functions f, gi and hi are known only numerically; 
therefore, classical assumptions about differentiability and convexity cannot 
be assessed. From the computational viewpoint, the numerical 
approximation of the gradient is time consuming: moreover, it is a potential 
source of inaccuracies that could originate false steady-points when 
determining x~ (see Section 2.7). 
 



P. Di Barba, Lecture Notes on Inverse Problems in Electromagnetism 

2.6.2 Managing constraints 
 
Kuhn-Tucker theorem inspired a number of methods to incorporate 
constraints in the objective function. In fact, a simple technique to manage 
constraints is to transform the constrained problem into an unconstrained 
one, by adding a penalty term to the objective function when the design 
variables violate the constraints. This way, a sequence of unconstrained 
problems is solved, which is assumed to converge to the solution of the 
constrained problem. 
A simple functional, which can be used when e.g. a set of equalities is 
prescribed, is the following: 

( ) ( ) ( )[ ] ( )[ xhxh
2
1xf,x Tλ+=λΦ ]    (2.18) 

where h is a column vector with entries hi(x) like in (2.10) and λ is a 
(known) multiplier. Intuitively, the idea is to balance the goal of reducing 
the objective function and staying inside the feasible region. Deriving a 
sequence of penalty functions as in (2.10) for increasing values of , it is 
expected that the approximated solution tends to the true solution as 

. Traditionally, this procedure is implemented as follows: 

λ

∞→λ

i) initialize  ; +ℜ∈λ0
ii) choose a known sequence { } ∞→λk ; 
iii) for each kλ  , find an unconstrained local solution x* minimising 

( )k,x λΦ ;  

iv) stop when the residual ( )[ ] ( )[ ]*xh*xh T  is small enough. 
Although the procedure described above is appealing, it suffers from 
numerical difficulties in practice: these are caused by the fact that, as 

, it becomes increasingly difficult to perform the minimisation step 
iii) of the algorithm. Choosing a large 

∞→λ

0λ or a rapidly increasing sequence of 

kλ  gives origin to minimisation sub-problems which are difficult to solve 
accurately. The alternative of choosing a small 0λ  or increasing the 
sequence slowly makes it easier to achieve an accurate solution to sub-
problems, but the procedure is not cost-effective. So, a trade-off is 
necessary. 
In general, it can be stated that a cost-effective and accurate solution to the 
optimisation problem depends on the number of design variables and 
constraints, as well as on the properties of objective function and 
constraints. 
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2.7 Local vs global search 
 
Several algorithms for both unconstrained and constrained optimisation are 
available; basically, they can be sorted into two broad classes (gradient-free 
and gradient-based methods) in terms of the derivative information which is 
not used or used, respectively. 
Methods that use only function evaluations (zero-order methods) fall under 
the first class; they are suitable for problems characterized by non-linearity 
and discontinuities of the objective function, because the gradient might be 
critical to be evaluated or even not defined. The computational efficiency is 
low due to the repeated calls to the objective function.  
In turn, gradient-based methods are more efficient than the zero-order ones: 
they are recommended when regular objective functions are dealt with. The 
simplest way to approximate the gradient of the objective function relies on 

finite differences; e.g. if ( )
i

i x
fxq

∂
∂

≡  is the i-th component of the gradient, a 

simple forward-difference scheme gives 

( ) ( ) ( )
v

iii
i n,...,1i,

h
xfhexfxq =

−+
≅   (2.19) 

where h is the incremental step and ei is the unit vector along the i-th 
direction. 
 
The following remarks can be put forward. 

• The approximation of the gradient is expensive, since two function 
evaluations are needed for each gradient component 

• Moreover, the appropriate choice of the incremental step implies 
repeated numerical experiments. 

• Finally, the gradient computation might be an additional source of 
numerical ill-conditioning, due to round-off errors in the evaluation 
of both objective function and finite difference. 

 
In the basic case of the gradient method, the minimisation trajectory follows 
the steepest descent: the algorithm starts from a given initial point 0x  , 
approximates the gradient of the objective function at 0x  , then finds the 
scalar  minimising the one-dimensional restriction α~ ( )( )00 xfxf ∇α+α  of 

the objective function ( )xf  along the direction of the gradient. This way, a 
new point ( )001 xf~xx ∇α+=  is found; the procedure is iterated until the 
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prescribed stopping criterion is fulfilled. This way, a zig-zag trajectory, 
joining x0 to the final solution, is generated in the design space. 
Higher-order methods, like Newton’s method, are rarely used in practice, 
because they are suitable only when the Hessian matrix can be easily 
computed. In general, a minimiser of higher order starts from an initial point 
x0 and iteratively selects a search direction in the nv-dimensional space of 
the design variables, following an algorithm based on the definition of 
conjugate directions: vectors si and sj are said to be A–conjugate if it exists a 
symmetric and positive-definite matrix A such that  with ; if 
A is the identity matrix, the usual definition of orthogonality results. Once a 
search direction is identified, a one-dimensional minimisation is performed 
to locate the point with the lowest value of the objective function, which 
will be the current point in the next iteration. The following pseudo-code 
implementing the search, can be given. 

0Ass j
T
i = ji ≠

 
 

begin 
select an initial design vector x0   % initialization 
initialize a set of nv conjugate directions sk   
set xk = x0

10   while  vnk1 ≤≤
find k

~α  minimising ( )kkk sxf
k

α+α   % nv scalar minimisations 

end while 
if the terminating criterion is fulfilled then stop % convergence 

else set ∑ =+ α= v

v

n
1k kk1n ss    % search direction upgrade 

 vk1k n,2k,ss ==−  
  1nn vv

ss +=
       go to 10 

end if 
end 

 
 
Independently of the order, all the aforementioned methods are local in a 
sense, because they are able to identify the closest minimum to the starting 
point, which is a local one unless f is convex. For this reason they are said to 
perform a deterministic search. To cope with these difficulties, non-
deterministic minimisation algorithms, which are derivative-free and 
perform a stochastic search, have been developed. 
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2.7.1 A deterministic algorithm of lowest order: simplex method 
 
The simplex method is based on the comparison among the cost function 
values at the nv+1 vertices of a polytope (simplex), where nv is equal to the 
dimension of the search space. In the case of nv=2 (nv=3), the polytope is a 
triangle (a tetrahedron). 
The algorithm begins with nv+1 points, which form the starting polytope, 
and the calculation of the associated objective function values. At each 
iteration a new polytope is set up by generating a new point to replace the 
worst vertex of the old polytope, i.e. the vertex corresponding to the highest 
value of objective function. Specifically, the worst vertex is replaced by its 
reflection with respect to the remaining n vertices. If the objective function 
evaluated at the new point is higher than at the worst vertex, then the new 
point is rejected and the vertex with the second worst value is reflected.  
When it happens that a vertex belongs to the polytope longer than a given 
number of iterations, then the polytope is updated by contraction. The whole 
procedure is iterated until the diameter of the simplex is less than the 
specified tolerance. 
 
 
2.7.2 Evolutionary computing 
 
Darwinian evolution is intrinsically a robust search and has become the 
model of a class of optimisation methods for the solution of real-life 
problems in engineering. For the latter, the natural law of survival of the 
fittest in a given environment is the model to find the best design 
configuration fulfilling given constraints. As a matter of fact, the principle 
of natural evolution inspired a large family of algorithms that, through a 
procedure of self adaptation in an intelligent way, lead to an optimal result. 
A primary advantage of evolutionary computing is its conceptual simplicity: 
a very basic pseudo-code that describes this kind of algorithm for function 
optimisation is here reported:  
 
i)  initialize a population of individuals; 
ii) randomly vary individuals; 
iii) evaluate fitness of each individual; 
iv)  apply selection; 
v)  if the terminating criterion is fulfilled 

then stop, else go to step ii). 
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The algorithm consists of initialization, which may be a purely random 
sampling of feasible solutions (step i), followed by iterative variation (step 
ii) and selection (step iv) based on a performance index (the fitness, step iii). 
This figure of merit attributes a numerical value to any feasible solution in 
such a way that two competing solutions can be hierarchically ranked. New 
solutions are generated by randomly varying existing solutions; this random 
variation may include mutation (as in evolution strategies) and 
recombination (like in genetic algorithms). Selection is applied to determine 
which solutions will be maintained into the next generation. Unlike 
deterministic methods, finer granularity in search, as gradient information, 
is not required. Over iterations of random variation and selection, the 
population can be made to converge to optimal solutions (step v).  
It can be noted that the basic algorithm behind evolutionary computing is 
always the same. Formally, the procedure generating a new solution may be 
written as the difference equation 

( ) ( )( )( )txvs1tx =+      (2.20) 

( ) 0x0x =        (2.21) 

where x(t) is the population at time t under a representation x, while v is an 
operator of random variation, and s is the selection operator. There are 
several possible representations, variation operators, and selection operators: 
in the literature, this gave rise to very many declinations of the same basic 
algorithm, under different names and in different contexts. The effectiveness 
of an evolutionary algorithm depends on the interdependence between the 
operators s and v applied to a given representation x of the evolving 
population, with initialization x0 . In practice, this interdependence gives 
freedom to the designer to tailor the evolutionary approach for his/her 
special problem of interest. This feature gives an extra advantage over 
classical optimisation methods. 
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2.7.3 An evolution strategy of lowest order 
 
Evolution strategy mimics the survival of the fittest individual that is 
observed in nature. An algorithm of the lowest order (i.e. a single parent 
generates a single offspring) is here shortly presented. The search in the 
design space begins in a region centred at the initial point m0 and having 
radius 0d ; m0 is externally provided, while d0 is internally calculated on the 
basis of the feasible-region size. 
Mutating the parent configuration m means that a vector v, whose elements 
are characterized by a Gaussian distribution with a zero average and a 
standard deviation d, is added to the parent configuration itself, namely 

; in general, x, m, and d, as well as m( d,0vmx += ) 0 and d0 , are to be 
considered as nv-dimensional vectors. 
The offspring configuration x is then compared with the parental 
configuration m in terms of objective function value, and the configuration 
yielding the best fitness is determined to be the parent for the next 
generation. 
The next step is concerned with the size of the search region that will be 
used for the successive iteration. The underlying rationale is that when a 
point better than the current one is found, the radius of the search region is 
increased around the new point to search for further improvements; if no 
improvement is found, the radius of the search region is gradually decreased 
up to convergence (annealing process). 
In this respect, the evolutionary algorithm substantially differs from a 
deterministic one, in which the search region would be narrowed around the 
better point in order to converge towards the corresponding, nearest 
minimum. On the contrary, the evolutionary algorithm, if successful in 
finding a better point, covers a larger region of search in order to see if there 
would be another good candidate in the neighbourhood, and then does the 
opposite when this is not believed possible. This way, there is a non-zero 
probability of finding the region where the global optimum of the objective 
function is located. 
An iteration is said to be successful if x is feasible and improves the 
objective function This way, the history of the nb previous iterations are 
used to establish a trend: if at least a fraction p of the last nb iterations were 
successful, then the current trend is said to be positive, while it is negative 
otherwise. The annealing process is ruled just by the history of the 
minimisation procedure. If the current trend is positive, the radius d  of the 

search region is increased to 1q0,dq 1 <<−  and otherwise it is decreased 

to dq ; during the first nb iterations, d remains unchanged. The procedure 
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stops when the prescribed accuracy dd 1
0
−  is achieved. Quantities p and q 

are named probability of success and rate of annealing, respectively and 
represent the “tuning knobs” of the algorithm; heuristic values for nb , p and 
q are 50, 0.2 and , respectively. 9.08.0 ÷
A possible pseudo-code implementing the algorithm can be set up as 
follows: 
 
 

begin 
set “tuning knobs” values p, q, nb
initialize search radius d    % initialization 
initialize a population of feasible individuals 
take individuals as parents 

10 generate a vector of Gaussian samples 
for each individual     % mutation + generation 

mutate the parent configuration 
generate the offspring configuration 
if the offspring is unfeasible then go to 10 
end if 

end for 
for each parent 

evaluate the objective function fpar
end for 
for each offspring 

evaluate the objective function foff
end for 
if foff < fpar then select the offspring as a new individual % selection 

else select the parent as a new individual 
end if 
evaluate the current probability p’ of success 
if p’ > p then update search radius as q-1d   % annealing 

else update search radius as qd  
end if 
if the terminating criterion is fulfilled then stop  % convergence 

else go to 10 
end if 
end 
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2.7.4 No free-lunch 
 
It is natural to ask whether there is a best evolutionary algorithm that would 
always give better results across the possible range of optimisation 
problems. In other words, the question is whether there is a choice of 
variation and selection operators that will always outperform all other 
choices regardless of the given problem. The answer is that there is no best 
evolutionary algorithms, and the result is known as the “no free-lunch” 
theorem (Wolpert and Macready, 1997). 
In mathematical terms, let an algorithm a be represented as a mapping from 
previously-unvisited sets of points to a single previously-unvisited point kξ  
in the search space composed of all feasible points. Moreover, let 
( a,k,fP kξ ) be the conditional probability of visiting point kξ  when 

algorithm a is iterated k>1 times on objective function f. Then, for any pair 
of algorithms, a1 and a2 , it turns out to be: 

( ) ( )∑∑ ξ=ξ
f

2k
f

1k a,k,fPa,k,fP    (2.22) 

In other words, the sum of the conditional probabilities of visiting point kξ  
is the same over all possible objective functions f, regardless the algorithm 
chosen (either a1 or a2). 
Since no restrictions on the mapping operated by algorithm ai on feasible 
points are assumed, it follows easily that all optimisation algorithms, both 
evolutionary and non-evolutionary, have identically mean performance 
across all possible objective functions. 
 
Summing up, two remarks can be put forward. 
i) there is no best algorithm, whether or not it is evolutionary; 
ii) whatever an algorithm gains in performance on one class of problem is 
necessarily offset by that algorithm performance in the remaining problems. 
 
The simple conclusion of no-free-lunch theorem has originated a great deal 
of controversy in the area of evolutionary computing, and some 
misunderstanding too. In the eighties through the nineties of the last century, 
there has been a considerable effort in finding the best set of operators and 
‘tuning knobs’ of algorithms. In genetic algorithm area, for instance, these 
efforts have involved the probabilities of crossover and mutation operators, 
the representation of a population, its size and so forth. In particular, most of 
this research has stimulated numerical experiments on benchmark functions. 
However, the no-free-lunch theorem essentially states that conclusions 
drawn just on the basis of such trials are limited only to benchmark 
functions studied.  
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2.8 Solving inverse problems by means of rectangular 
systems of algebraic equations 
 
In general, the numerical solution of field problems leads to a system of 
algebraic equations of the type: 

bAx =     (2.23) 

where A is a rectangular nm×  matrix, x is the unknown n-vector and b the 
known m-vector. 
If m < n, the system is called under-determined. If, on the contrary, m > n, 
the system is called over-determined; the latter case is the most frequent 
when dealing with inverse problems, because one normally has more 
conditions to be fulfilled than degrees of freedom available. 
Finally, if m = n, the matrix A is square. In this case, if ( ) 0Adet ≠ , then A 
is non-singular; therefore A-1 exists and the corresponding system of 
equations has a unique solution for any b. This is the typical case when 
dealing with direct problems. 
As far as the effect of a small perturbation of b on x is concerned, supposing 
m=n, let the condition number of A be defined as follows: 

( ) 1AAAcond
min

max1 ≥
λ
λ

=≡ −    (2.24) 

where  and  are the maximum and minimum eigenvalues of 
matrix A, respectively. If cond(A) is large, then the matrix is called ill-
conditioned and the solution may be perturbed substantially by even a small 
change of b.  

maxλ 0min ≠λ

If A is rectangular, theoretically the inverse of A does not exist and the 
system of equations has no or infinite solutions. However, if m > n and the 
rank of A is equal to n (i.e. the n columns of A are linearly independent), a 
pseudo-inverse of A can be looked for, by means of suitable numerical 
techniques like least-squares or singular-value decomposition. 
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2.8.1 Least-squares 
If A is a nm×  matrix (m >n) of rank n and b is a given m-vector, then a 
solution to (2.23) can be found by minimising a norm, for instance the 
Euclidean or two-norm, of the residual Ax-b. The latter is defined as 

( ) bbbAx2AxAxbAxxr TTTTT2
2 +−=−=   (2.25) 

The gradient of the residual is 

( ) bA2AxA2bAxxr TT2
2 −=−=∇     (2.26) 

Apparently, the residual has a unique minimum point x~  such that ( ) 0x~r =∇ . 
The so-called normal equations associated to (2.23) are obtained forcing just 
the latter condition, giving 

0bA2AxA2 TT =−      (2.27) 

and, therefore, 

bAAxA TT =      (2.28) 

where ATA is a square  matrix. It can be proven that the vector nn×

( ) bAAAx T1T* −
=      (2.29) 

fulfils the condition 

22
* bAxbAx −≤−     (2.30) 

for each n-dimensional vector x and so x* is the least-square solution to 

(2.23); matrix ( ) T1T AAA
−

 is called pseudo-inverse of A. 
In principle, if A has full-column rank, ATA is positive definite; however, 
from the numerical viewpoint, solving (2.28) might fail for a twofold 
reason: 
- the magnification of ill-conditioning when passing from A to ATA, 
resulting in cond(ATA)>>1; 
- the round-off errors after calculating the entries of ATA. 
Therefore, the use of normal equations is not recommended because it might 
lead to instability. 
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2.8.2 Singular-value decomposition 
 
A more effective approach is given e.g. by the Singular Value 
Decomposition (SVD) method; basically, it consists of decomposing the 
matrix A, which is assumed to be full-column rank (m > n), into the product 
of three matrices, i.e. a mm×  orthogonal matrix U, a nm×  block diagonal 
matrix S, a nn ×  orthogonal matrix V, such that A = USVT. In particular, it 
results 

⎥
⎦

⎤
⎢
⎣

⎡Σ
=

00
0

S       (2.31) 

with ( )n1,...,diag σσ=Σ . The diagonal entries of Σ are the singular values 
of A. 
The solution to the least-square problem is then given by 

bUSVx T1* −=      (2.32) 

with 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡Σ=
−

−

00
0S

1
1      (2.33) 

and ( )1
n

1
1

1 ,...,diag −−− σσ=Σ . Also matrix VS-1UT is a pseudo-inverse of A. 
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2.8.3 Regularization  
 
The regularization method was proposed as a way to stabilize the solution of 
the Fredholm’s equation of the first kind (2.1). For this class of integral 
equations, in fact, the solution f(y) does not depend continuously on the 
given function g(x). Since the output is not stable against small perturbation 
of the input, problem (2.1) violates the Hadamard’s conditions of well-
posedness (see Section 2.2). 
In (2.1) the integral operator ( )∫ ⋅dyy,xK  can be discretized by means of a 
finite-difference grid composed of n nodes, while the known term g(x) can 
be discretized on another grid of m > n nodes. This gives rise to matrix A 
and vector b, approximating the integral operator and the source term, 
respectively. 
Due to the ill-posedness of the continuous problem (2.1), also the 
discretized problem, i.e. the resulting set of linear algebraic equations 
(2.23), where vector x approximates function f(y), is ill-posed. Nonetheless, 
taking into account some a priori information about the solution, it is 
possible to convert (2.23) into a well-posed problem: for instance, if the 
norm of the solution x should be bounded, it makes sense to incorporate a 
penalty term into the problem formulation. 
To this end, let the so-called Tikhonov’s functional be defined as 

( ) =α+−≡ ααα
2
2

2
2 xbAxxT      

ααααα α++−= xxbbbAx2AxAx TTTTTT   (2.34) 

Then, the regularization problem reads 

find ( )α
∈α

xTinf
Xx

    (2.35) 

Forcing the equilibrium condition ( ) 0xT =∇ α , one finds a unique minimum 
point; in fact, one has 

0x2bA2AxA2xbAx TT2
2

2
2 =α+−=⎥⎦

⎤
⎢⎣
⎡ α+−∇ ααα  (2.36) 

The solution αx~  of (2.36) is the so-called quasi-solution to problem (2.23). 

Therefore,  solves the system of linear equations , 
or, equivalently, 

αx~ bAAxAx TT =+α αα

( ) bAxIAA TT =α+ α     (2.37) 
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The latter is the Euler’s equation associated to Tikhonov’s functional. If 
columns of the augmented matrix  are linearly independent, then 
the solution  is unique and it can be proven that it depends continuously 
on A

IAAT α+
αx~

Tb. 
In other words,  keeps the residual αx~ 2

2bAx −α  small in a stable way, 

which is controlled by the penalty term 2
2xαα . As far as numerical aspects 

are concerned, the optimal value of the regularization parameter α is 
critical: if too small, the solution xα will be oscillatory; if, on the contrary, 
too large, the solution will be over-smoothed. 
 
There is another viewpoint to consider problem (2.35), i.e. in terms of a 
two-objective minimisation. In fact, the norm 2

2bAx −  in the Tikhonov’s 
functional (2.34) accounts for the agreement of the field model to the 
supplied data. When the norm itself is minimised, the agreement becomes 
very good, but the solution is unstable. That is where the second norm 2

2x  
appearing in (2.34) comes in, in order to control the smoothness of the 
solution, i.e. its stability with respect to perturbations in the data. In turn, 
minimising the second norm by itself gives a very smooth solution that has 
nothing in common with the given data. Therefore, the trade-off curve of the 
best compromises between agreement and smoothness is to be sought for, 
by varying the regularization parameter α in a suitable way and then 
selecting an equilibrium point along the curve. 
Likewise, in previous Section 2.6.2, functional (2.18) aiming at reducing 
both objective function and constraint violation was another example of 
two-objective minimisation. A full overview of multi-objective optimisation 
theory will presented in Chapter 3. 
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