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Chapter 3 
 
 

AN APPLICATION-ORIENTED 
THEORY OF MOSD 

 
 
 
3.2 Multiobjective formulation of a design problem 
 
In general, problems arising in electromagnetic design can be formulated as 
non-linear constrained  problems. Often, multiple objective functions are to 
be optimized simultaneously: problems of this kind belong to the category 
of multiobjective or multi-criteria. Their formulation is characterized by a 
vector of objective functions. 
Formally, considering nv variables, a multiobjective  problem can be cast as 
follows: 

given  , find vn
0x ℜ∈ ( ) vn

x
x,xFinf ℜ∈   (3.1) 

subject to ni inequality  and ne equality constraints 

( ) ii n,1i,0xg =≤      (3.2) 

( ) ej n,1j,0xh ==      (3.3) 

and also to  bounds vb n2n ≤

vkkk n,1k,ux =≤≤l    (3.4) 

It can be noted that a subset of design variables x might not belong to , 
like in the case of discrete-valued or integer-valued variables; here, 
however, continuous-valued variables are considered. 

vnℜ

In (3.1), ( ) ( ) ( ){ } f

f

n
n1 xf,...,xfxF ℜ⊂=  is the objective vector composed of 

2nf ≥  terms. Therefore, F defines a transformation from the design space 

 to the corresponding objective space . Often, the nvnℜ fnℜ f objectives are 
non-commensurable, because they have different physical dimensions: they 
might refer to various characteristics or performances of the device (e.g. 
cost of materials, device volume, field homogeneity, power loss and so 
forth), to be optimized simultaneously. Therefore, the designer is forced to 
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look for best compromises among all the objectives. In order problem (3.1) 
to be non-trivial, the pair (fi,fj) must represent conflicting objectives for 

; a rigorous definition of conflict will be given in Section 3.3 (see 
Definition 3.8). 

ji ≠

Traditionally, the multiobjective problem is reduced to a single-objective 
one by introducing a preference function ( )xψ , e.g. the weighted sum of the 
objectives: 

( ) ( )∑
=

=ψ
fn

1i
ii xfcx     (3.5) 

with  , to be minimised with respect to x. It is clear that 

the hierarchy attributed to one objective can be modified by changing the 
corresponding weight. For a given set of weights, the relevant solution, if 
any, is assumed to be the optimum. 

1c,1c0
fn

1i
ii =<< ∑

=

However, the most general solution is represented by the Pareto front of 
non-dominated solutions, i.e. those for which the decrease of a function is 
not possible without the simultaneous increase of at least one of the other 
functions. This means to have a family of solutions to be compared. From 
the designer viewpoint, when multiple solutions of a given problem are 
available, it is necessary to rank them according to a general rule: the 
concept of Paretian optimality is particularly useful, because it gives a 
mathematically precise definition of compromise solution. The theory of 
multiobjective shape design (MOSD) presented in the book is based just on 
Paretian optimality. It is intended to be application-oriented because a 
problem-solving approach shall be followed: in particular, static 
optimization will be introduced first, while extension to dynamic 
optimization will be developed next. 
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3.3 Paretian optimality 
 
The basic concepts featuring the Pareto optimality theory are here presented. 
The first definition refers to the search space, which is defined as in most 
minimisation problems. 
 
Definition 3.1 
Let  denote the nvnx ℜ∈ v-dimensional design vector, i.e. let its components 

 be the design variables. vk n,1k,x =ℜ∈
Let  be  one-dimensional sets, named bounding 

ranges, and let  and 
vk n,1k, =ℜ⊆Ω vn

( ) i
n

i n,1i,:xg v =ℜ→ℜ ( ) e
n

j n,1j,:xh v =ℜ→ℜ  
be ni+ne scalar functions, termed constraints. 
Then, the set 

{
( ) ( ) }ejii

vkk
n,1j,0xh,n,1i,0xg

,n,1k,xxX
===≤

=Ω∈=
 (3.6)   

is called feasible design region or design space. 
 
In other words, X is the set containing all and only the design vectors 
fulfilling bounds and constraints. The definition of the objective space is 
then straightforward. 
 
Definition 3.2 
Let  be a design space and let  be a vector of scalar 
functions  termed objectives. The latter are supposed to be 

bounded, i.e. it is assumed that n

vnX ℜ⊆ ( ) fnX:xF ℜ→
( ) fj n,1j,xf =

f constants  exist such that +ℜ∈im
( ) fii n,1i,mxf =≤ . Then, the set 

( ) ( ){ }xFythatsuchXxyXFY fn =∈∃ℜ∈==   (3.7) 

is called objective space (see Fig. 3.1). 
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Fig. 3.1 – Mapping from design to objective space. 
 
 
In general, some objectives are to be minimised and some others to be 
maximised. According to Paretian optimality, given two feasible solutions, a 
solution dominates the other one if the first is better than the second with 
respect to one objective, without worsening all the other objectives. On the 
other hand, two solutions are indifferent to each other if the first is better 
than the second for some objectives, while the second is better than the first 
in all the other objectives. This pair of concepts represents the key point of 
the theory, which is formalized as follows. 
 
Definition 3.3 
Let  be a design space and let  be a vector of 
n

vnX ℜ⊆ ( ) fnYX:xF ℜ⊆→
f  objectives, where each ( ) fj n,1j,xf =  is to be minimised with respect 

to x. Given two vectors Xx1 ∈  and Xx2 ∈  with 21 xx ≠  , the following 
relationships hold: 
• x1 is said to dominate x2 if 

( ) ( ) ( ) ( ) ij,n,1jxfxfandxfxfthatsuchi f2j1j2j1i ≠=∀≤<∃ ; 

• x1 is said to be indifferent to x2 if 
( ) ( ) ( ) ( ) f1j2q2j1i n,1jxfxfthatsuchqandxfxfthatsuchi =∀<∃<∃ . 
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Actually, the definition above deals with the weak dominance; the definition 
of strong dominance follows: 
• x1 is said to strongly dominate x2 if 

( ) ( ) ( ) ( ) ij,n,1jxfxfandxfxfthatsuchi f2j1j2j1i ≠=∀<<∃ .  
 
The following remarks can be put forward. 
When two solutions are available, three kinds of logically different 
situations can happen as shown in Table 3.1. 

 
 

Table 3.1 – Solution comparison: a logical sorting. 

Situation Consequence 
x1 dominates x2 x1 is better than x2
x2 dominates x1 x2 is better than x1
none of the two x1 and x2 are equivalent 

 
 
It should be noted that the concept of indifference does not apply under the 
frame of single-objective . In fact, given an objective ( )xψ  and two feasible 
vectors x1 and x2 with , if 21 xx ≠ ( ) ( )21 xx ψ≠ψ , either ( ) ( 21 xx ψ< )ψ  or 

 holds. ( ) ( 12 xx ψ<ψ )
 
Moreover, in the case of nf = 2 objectives, there is a straightforward 
geometric representation of dominance relationships. Any point of the Y 
space, whose coordinates take the values of the two objectives, can be 
located at the vertex of the dominance dihedral. The latter is defined as the 
orthogonal sector having its vertex at a given point in the Y space, and 
containing all and only the points dominating the given one (see Fig. 3.2) 
according to Def. 3.3. If the dihedral is empty, then the solution 
corresponding to the vertex is said to be non-dominated. An analogous 
definition of hyper-dihedral can be given for a number nf > 2 of objectives. 
 
 

f1

f2

y1
y2

y3
y4

Fig. 3.2 – Geometric interpretation of dominance dihedral (nf = 2). 
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For the sake of an example, supposing a min-min problem, the situation 
depicted in Fig. 3.1 is the following: given , F2X:F ℜ→ -1(y2) (weakly) 
dominates F-1(y1) ; F-1(y3) (strongly) dominates F-1(y1) ; F-1(y4) is indifferent 
to F-1(y1). 
 
It is intuitive to realize that the ideal goal of a multiobjective  is to find all 
and only the non-dominated solutions, i.e. those which are not dominated by 
any other in the design space or, alternatively, those the dominance dihedral 
of which is empty (see Fig. 3.3). 
 
 

 
 

Fig. 3.3 – An objective space bounded by the PF: 
the dominance dihedral of a solution along the front is empty. 

 
 
Non-dominated solutions are called also non-inferior or efficient solutions. 
So, the definition of optimality follows immediately. 
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Definition 3.4 
Let  be an objective space. Then, a point fnY ℜ⊆ Yy ∈  is said to be Pareto 

optimal if no point Yy~ ∈  exists such that  dominates . ( )y~F 1− ( )yF 1−

 
The next definition is preliminary to the formulation of a multiobjective 
problem. 
 
Definition 3.5 
Let  be a vector of n( ) YX:xF → f objectives, with  and  
indicating the design space and the objective space, respectively. Then, 

vnX ℜ⊆ fnY ℜ⊆

• the set { }optimalParetoisyYy ∈=Φ  is called Pareto front 
(PF); 

• the set ( ){ Φ∈∈=Ξ xFXx } is called Pareto set (PS). 
 
Sometimes, the Pareto front Φ  is called trade-off curve. 
The sets  and Φ  characterise the solution of a multiobjective problem in 
the X and Y spaces, respectively; in particular, 

Ξ
Φ  is the image of  

through F. In a sense, Ξ  should be considered the solution set, in analogy to 
the single-objective case (see Fig. 3.4) 

Ξ

 
 

 
 

Fig. 3.4 – Correspondence between PF and PS: 
the latter might form a set of islands. 

 
In particular, in the design space it might happen that non-dominated 
solutions fall inside a set of sub-regions (PS islands), a kind of statistical 
attractor, which however map to a small part of the front: getting 
information about the structure of the search space helps to select 
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appropriate solution methods for the given optimisation problem (see 
Chapter 5). 
According to previous definitions, it is possible to give a general 
formulation for a problem with any number of objectives. 
 
Definition 3.6 
Let  be the ensemble of a vector objective function with the 
relevant design and objective spaces, respectively. Then, the corresponding 
multiobjective minimisation problem reads 

( )Y,X,F

find  and Y⊂Φ X⊂Ξ  such that ( ) Φ=ΞF  (3.8) 

 
The last definition, which generalizes the formulation (3.1)-(3.4) given in 
Section 3.2,  points out the fact that a multiobjective problem admits a set of 
solutions, instead of just one like in the single-objective case. This 
represents the peculiarity of the theory presented. 
Another remark is worth being made. In an engineering problem, what is 
really interesting is to find the set of values ( )Φ=Ξ −1F  which minimises 
the objective functions in the Pareto sense. The objective space Y is but the 
control space, i.e. it provides some metrics to identify non-dominated 
solutions, which in turn are given in terms of the design space X. 
Following this line, a preliminary information about how the objective space 
is bounded is provided by some characteristic points, which can be 
determined prior to solving the multiobjective problem. Referring to a min-
min problem, as each scalar objective function is bounded and so it is 
supposed to have a minimum, there exists a vector in the Y space, called 
ideal objective vector, whose coordinates are the minima of the 
corresponding single objectives. 
 
Definition 3.7 
Let  with  and  represent a multiobjective 
problem. Then, the point 

( )Y,X,F vnX ℜ⊆ fnY ℜ⊆

( )
fni1 U,...,U,...,UU =  with ( ) fi

x
i n,1i,xfinfU ==  (3.9) 

is the ideal objective vector, named utopia point. 
 
The denomination of utopia descends appropriately from the impossibility 
to obtain such a solution in any way. In other words, it does not exist a 
vector Xx~ ∈  such that ( ) Ux~F = . On the other hand, if such a vector 
existed, it would be the unique solution to the problem; however, the latter 
would be single-objective instead of multiobjective. 
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In turn, the definition of utopia gives a chance to formalize the idea of 
conflict among multiple objectives. The following definition holds. 
 
Definition 3.8 
Given nf objectives, they are said to be in conflict if Xx~i ∈∃  such that 

( ) ( )xfinfx~f i
x

ii =      (3.10) 

with fji n,1j,i,ji,x~x~ =≠≠ . 
The conflict among objectives is just what prevents from minimising all of 
them simultaneously. 
 
In a symmetrical way with respect to utopia, the anti-utopia point can be 
defined. 
 
Definition 3.9 
Let  with  and  represent a multiobjective 
problem. Then, the point 

( )Y,X,F vnX ℜ⊆ fnY ℜ⊆

( )
fni1 A,...,A,...,AA =  with ( ) fi

x
i n,1i,xfsupA ==  (3.11) 

is called anti-utopia point. 
 
Finally, the definition of the nadir point is possible, even if it is univocal 
only in the case of two objectives. 
 
Definition 3.10 
Let  with  and  represent a two-objective 
problem, i.e. n

( Y,X,F ) vnX ℜ⊆ fnY ℜ⊆
f = 2. Then, the point 

( )21 R,RR =  with 2,1j,ysupR jj ==
Φ

   (3.12) 

is called nadir point. 
Extending the definition of nadir to the case nf > 2 is not straightforward, for 
the dimensionality of the Φ  set grows correspondingly and so the number 
of its end points. To this end, a wider information on the PF can be obtained 
after evaluating the matrix M with entries defined as follows: 

( ) ( ) ji,xfM

ji,UM

ii Uxfjij

iij

≠=

==

=

    (3.13) 
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with indexes i and j ranging from 1 to nf . In terms of just matrix M, the 
nadir coordinates can be obtained as follows: 

fij
n:1j

i n,1i,MmaxR
f

==
=

    (3.14) 

From a practical point of view, the computation of the ff nn ×  matrix M, 
and so of vectors U and R, requires nf single-objective optimisations. 

U

R

Φ 

A

f1

f2

Y

 
 

Fig. 3.5 – Geometric interpretation of the objective space (nf = 2). 
 
The overall situation is represented in Fig. 3.5 for the two-dimensional case; 
it can be remarked that the representation of the front is straightforward for 
two objectives, difficult for three objectives, impossible for more than three 
objectives. 
Basically, the pairs of points (U,R) and (U,A) provide two different bounds 
to ; moreover, it can be noted that U and A are unfeasible points by 
definition, while point R might be feasible. These points provide also a 
metric criterion: in fact, the distance between two points belonging to the Y 
space can be measured taking 

Φ

UR −  as the reference distance.  
A final remark can be put forward: Φ  can be interpreted as the boundary 
between the feasible design region Y and the unfeasible one outside Y, 
within the dominance dihedral associated to point R. 
 
The geometric classification of the front is far more than a theoretical 
aspect; actually, if priorly known, it can be crucial in choosing the proper  
method to identify the front, or, conversely, in determining the failure of an 
inadequate one. 
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More formally, the PF can be written as a function of one out of nf 
objectives against all the others in the following way:  

( )1n1nn fff
f,...,ff~f~ −=     (3.15) 

where 
fnf

~  denotes the non-dominated values of the nf-th objective. The 
latter function can be expressed in a closed form only in few analytical 
cases. 
 
Definition 3.11
A multiobjective  is said to be convex if and only if all objective functions 
and all constraint functions are convex; conversely, it is non-convex if at 
least one objective or constraint is non-convex. 
It could be proven that, for a convex problem, function (3.15) is convex and 
vice versa. 
 
Definition 3.12
A front is said to be discontinuous - or non-connected - if and only if 
function (3.15) is discontinuous. 
If this happens, the front is composed of a number of non-connected 
branches. 
 
Definition 3.13
In a two-dimensional case, a front is said to be weakly Paretian if either f1 or 
f2 , or both of them, are constant along a part of it. 
 
In Fig. 3.6 four main topologies of PF are shown for a two-dimensional 
min-min problem: convex, non-convex, non-connected, weakly Paretian, 
respectively. 
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Fig. 3.6 – Four possible topologies of PF. 

 
 
Nevertheless, there is another remark about front classification which relates 
to the difficulty of sampling it satisfactorily. Due to non-linearity of 
objective functions, in general, sampling uniformly the design space X gives 
rise to non-uniformly spaced solutions on the front in Y or, from the reverse 
viewpoint, if uniform sampling of the front is wanted in Y, sampling in X 
must follow a non-uniform law which is a priori unknown (see Fig. 3.7). 
If SX is a random sampling of space X, let SY=F(SX) be the corresponding 
sampling of space Y through vector transformation F. The concept of 
deceptive front arises. 
 
Definition 3.14
A front is said to be deceptive if and only if SY is a non-uniform distribution 
when SX is a uniform distribution. 
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Fig. 3.7 – Non-uniformly sampled PF (deceptive topology). 
 
 
Finally, the extension of the concept of multiple minima arising in single-
objective  to the multi-objective case gives origin to the definition of 
multimodal problem. 
 
Definition 3.15
A multiobjective  problem is said to be multimodal if and only if more than 
one PF exists. 
In general, the presence of one or more local fronts in addition to the global 
front is due to the non-convexity of at least one out of nf objective functions.  
 
For the sake of an example, a simple analytical benchmark is considered 
first: 

find   (3.16) 
( )

( ) ( ) 2
2121

x,x
x,x,f,finf

21

ℜ∈

with 

( ) 2
2

2
1211 xxx,xf +=      (3.17) 

( ) ( ) ( 2
2

2
1212 1x1xx,xf −+−= )    (3.18) 
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Due to the symmetry of f1 and f2 in the design space, the equation of the 
Pareto set is 

( ) [ ] [ ]1,01,0x,x,xx 2121 ×∈=    (3.19) 

i.e. the segment of straight line joining the minima (0,0) and (1,1) of the two 
objectives. From (3.18)-(3.20) the equation of the PF in the objective space 
is 

[ ]2,0f,02f22ff 1112 ∈=−+−   (3.20) 

For both functions are convex, the PF is convex too. The whole objective 
space is given by 

2,1i,0f;2f22ff i112 =≥+−≥  (3.21) 

 
In the single-objective case, a non-convex function exhibits one or more 
local minima in addition to the global minimum. Likewise, in the 
multiobjective case, the presence of non-convex functions originates local 
Pareto fronts. 
 
Definition 3.16 
Let  be a set of non-dominated solutions vnXP ℜ⊆⊂ ξ . If P∈ξ∀  no 

point X~
∈ξ  exists such that ξ

~  dominates ξ  and ε≤ξ−ξ
~  , where ε > 0 is 

a small length, holds, then P is a local Pareto set; the corresponding image 
 is a local Pareto front. ( )ξF

 
Accordingly, an analytical example can be stated as follows: 
find 

( ) 1
21

x
,f,finf ℜ⊂Ω

Ω∈
    (3.22) 

with 

xsinx)x(f,xcosx)x(f 21 ==    (3.23) 

If Ω is large enough, both the objectives have several local minima; 
correspondingly, local fronts are originated. 
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Fig. 3.8 – Multimodality: an objective space 

with local (1,2,3) and global (4) fronts. 
 
Let e.g. the set  be considered; in Fig. 3.8 a discrete 
representation of the objective space is shown: three local fronts are 
outlined, in addition to the global one. 

[ 25,0=Ω ]

In general, the equation of the fronts can be deduced from (3.23) as 

2,1i,0f;
f
ftanff i

2

1

212
2

2
1 =<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=+ −    (3.24) 

Moving from analytical examples to numerical case studies is necessary for 
applying Paretian optimality to field-based inverse problems. To this end, in 
the next Chapter the most important field models used in computational 
electromagnetism are reviewed in the light of shape design problems.  
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