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Chapter 4 
 
 

SOLVING MULTIOBJECTIVE 
OPTIMISATION PROBLEMS 

 
 
 
 
5.1 Classical methods of multiobjective optimisation 
 
 
5.1.1 Objective weighting 
 
The formulation is the following: 

find  ( ) vn
x

Rx,xinf ⊆Ω∈ψ

with 

( ) ( )∑ ∑
= =

=
−

=ψ
f fn

1i

n

1i
i

ii

ii 1w,
UR
xfwx   (5.1) 

where Ri and Ui are nadir and utopia point components, respectively. The 
use of this kind of normalization is important for weights wi to express 
desired compromises. 
The following theorem holds. 
Let the PF be convex and let ( ) ( ) ( ) ( )( )xf,...,xf,xfxF

fn21= . If  exists 

such that , then there exists a weighting vector 

 such that x* is a solution of the 

problem: find . 
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A simple geometric interpretation in the two-dimensional case is shown in 
Fig. 5.1, where some contour lines of function 2211 fwfw +=ψ  (dashed 
straight lines) are plotted in the objective space, assuming 1UR ii =− ; the 
relevant PF is also shown. 
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Fig. 5.1 – Success of objective weighting in the case of convex front 

(solution C is recovered). 
 
Once weights w1 and w2 are fixed, the minimisation process can be viewed 
as a search for the point of the straight line which is externally tangent to the 
PF. 
The following remarks can be put forward. 

• It is easy to realize that only in the case of convex PF all its points 
can be sampled with this technique, by varying weights. When the 
front is non-convex, some solutions are missed (see Fig. 5.2). 

 

 
Fig. 5.2 – Failure of objective weighting in the case of non-convex front 

(solution C is missed). 
 
• It is difficult to identify the distribution of weights that give rise to a 

uniform distribution of solutions on the PF.  Though being desirable, 
a non-uniform distribution of weights, giving rise to a regularly 
spaced distributions of solutions along the PF, is a priori unknown. 
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5.1.2 Epsilon-constraint formulation 
 

In order to remedy the difficulty of dealing with a non-convex front, a 
single-objective formulation is considered in which nf-1 objectives are used 
as constraints and only one is selected as the objective function. The 
formulation reads: 
given a set of nf-1 values { } ℜ∈εε jj ,  

find ( ) vn
i

x
Rx,xfinf ⊆Ω∈  

subject to 
( ) fjj n,...,1j,ij,xf =≠ε≤     (5.1) 

 
 

 
Fig. 5.3 – Success of epsilon-constraint in the case of non-convex front 

(solution C is recovered). 
 
To find a Pareto-optimal solution, a suitable value εj is chosen for the j-th 
objective. Fig.5.3 shows that the method works also with a non-convex 
front. 
The following remarks can be put forward. 

• The optimisation procedure can be iterated with different values of  
εj for the j-th objective to find different Pareto-optimal solutions. 

• A knowledge of an appropriate range of εj values for the j-th 
objective is required to be known a priori. 
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Chapter 5 

 
 

FIELD MODELS AND SHAPE DESIGN 
 
 
Direct problems considered are boundary-value problems governed by 
Maxwell’s equations of electromagnetic field; their formulation in terms of 
vectors and potentials is here revisited. 
 
 
4.1 Maxwell's equations in differential form 
 
In a simply-connected domain Ω with boundary Γ, filled in by a linear 
material characterized by permittivity ε, permeability μ and conductivity σ, 
the time-varying electromagnetic field is governed by the following 
equations: 
 

Faraday's equation   
t
BE

∂
∂

−=×∇    (4.1) 

Gauss's electric equation  ρ=⋅∇ D    (4.2) 

Ampère's equation   
t
DJH

∂
∂

+=×∇   (4.3) 

Gauss's magnetic equation  0B =⋅∇    (4.4) 

 
where scalar ρ is the charge density [Cm-3] and vectors are defined as 
follows: 
 
D  electric displacement [Cm-2] 
E  electric field intensity [Vm-1] 
B  magnetic induction [T] 
H  magnetic field intensity [Am-1] 
J  current density [Am-2] 
 



P. Di Barba, Lecture Notes on Inverse Problems in Electromagnetism 

In a three-dimensional domain, equations (4.1)-(4.4) are a set of eight scalar 
equations which the following constitutive laws 
 

ED ε=      (4.5) 

0BHB +μ=      (4.6) 

0JEJ +σ=      (4.7) 

must be added to; in (4.6) the term 0B  accounts for the permanent 
magnetization of the magnetic material, if any. In (4.7) the terms Eσ  and 

0J  account for eddy and driving current density, respectively, while in (4.3) 

t
D

∂
∂  is the displacement current density, respectively. 

In total, considering both Maxwell’s equations and constitutive laws, fifteen 
scalar unknowns (i.e. field components) have to be determined subject to 
suitable boundary and initial conditions. The system of eight plus nine 
equations can be solved, because there are two relations among the 
unknowns which are automatically satisfied. 
In fact, taking the divergence of (4.1) and the time derivative of (4.4), one 
obtains an identity. Analogously, taking the divergence of (4.3) and the time 
derivative of (4.2), the charge continuity equation 

0
t

J =
∂
ρ∂

+⋅∇      (4.8) 

follows. In other words,  the source terms ρ and J  are not independent; this 
makes the field analysis problem a well-posed one. 
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Helmholtz’s theorem 

 

A vector field V is defined in a simply-connected domain Ω, giving its 
divergence and curl in Ω as well as its normal component on the 
boundary Γ. 
 
In a domain Ω bounded by Γ, given 

sV =⋅∇   in Ω     (2.1.16) 

cV =×∇       (2.1.17) 

hnV =⋅   along Γ   (2.1.18) 

where n  is the outward normal unit vector, the vector field V is defined in 
a unique way. 
 
 
 
The following remarks can be put forward. 
 
i) The value of s, c  and h, which are the sources of the field, cannot be 
chosen arbitrarily. 
 
In fact: 
 
a) c must be divergence-free (solenoidal) 

( ) 0cV0 =⋅∇=×∇⋅∇=     (2.1.31) 

 

b) 

∫∫
ΓΩ

Ω⋅=Ω⋅∇ dnVdV     (2.1.32) 

i.e. 

∫∫
ΓΩ

Γ=Ω dhds      (2.1.33) 

 
ii) Specifying just sV =⋅∇  is not enough to determine V since also 

WV ×∇+  fulfils (2.1.16) 
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( ) sWVWV =×∇⋅∇+⋅∇=×∇+⋅∇   (2.1.34) 

Conversely, V  is not determined by just cV =×∇  since Ψ∇+V  also 
obeys (2.1.17) 

( ) 0cVV +=Ψ∇×∇+×∇=Ψ∇+×∇   (2.1.35) 

 
iii) If s = 0, the field is called solenoidal. 
 
iv) If 0c = , the field is called irrotational. 
 
The problem of finding the field V  in a domain, knowing its sources and normal 
component on the boundary, is normally referred to as a boundary-value problem. 
As shown by the Helmholtz’s theorem, this problem has, at most, a unique 
solution. 
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4.6 Field-based inverse problems 
 
In multiobjective shape design, vector x represents the geometric variables 
of the device to be synthetised. This fact in itself makes the dependence of 
the objective fj rather complex. In fact, both the direct problem, through 
field equations, and the inverse problem, through objectives, depend on 
design variables. Furthermore, since objective fj is usually a field-related 
quantity, it depends on x explicitly and also implicitly, by means of the field 
solution. In general, the following mapping applies 

{ } ( ) ( )( ) fj n,1j,xs,xfobjectivexsfieldxgeometry =→→  

Accordingly, the minimisation problem correctly reads 

find     (4.89) ( )( ) f
n

j
x

n,1j,Rx,xs,xfinf v =⊆Ω∈

where s(x) is the solution of the direct problem corresponding to the actual 
design vector x. In a problem of shape design, two aspects are always 
involved: the optimal synthesis of field s which takes place in the device and 
the optimal design of device geometry x; formulation (4.89) points out that 
these two aspects are tightly interconnected. 
 
The situation is even more complicated, because  constraints might be 
prescribed for the field; in other words, a set 

1p ≥

( ) ( )( ){ }p,1k,c,cxs,xgxsC kkk =ℜ∈≤=     

can be defined. In this case, the minimisation problem reads 

find   (4.90) ( )( ) f
n

j
x

n,1j,Rx,xs,xfinf v =⊆Ω∈

subject to . ( ) Cxs ∈
For future reference, notation fj(x) without specifications will stand for the 
above formulation. 
Shape design problems can be classified according to the j-th objective 
function fj . It can represent the discrepancy between computed and 
prescribed quantity or the value of a local quantity (e.g. a field component in 
a part of the device) or, more generally, some characteristics of the device, 
like weight or volume or cost, and so on. If, for instance, r(x) is the residual 
vector representing the discrepancy between desired and actual value of the 
quantity to be optimised, then ( ) ( )[ ] ( )xrxrxf T

j =  (least-square formulation) 
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or  (min-max formulation) are possible forms of the 

objective.  

( ) ( )xrsupxf j
j

j =

 
The solution of optimisation problems like (4.89) is quite troublesome: in 
fact, function fj may be neither differentiable nor convex; from the 
numerical viewpoint, fj could be non-smooth a function. Moreover, the 
function evaluation in (4.89) or the constraint evaluation in (4.90) is costly, 
because any function call requires at least a solution of the field equation, 
which might be a non-linear one. This is the main source of insidiousness 
for field-based inverse problems, which calls for a trade-off between 
computational cost, runtime, and accuracy. 
From the numerical viewpoint, the solution of optimal design problems 
requires, as a rule, a module for calculating the field, associated with a 
module performing the minimisation of an objective function. 
In traditional computer-aided design (CAD) these two modules are linked in 
a way which simulates a trial-and-error procedure. So, starting from an 
initial design, the field analysis is obtained by means of a numerical method. 
Then, a check is made whether the device has the desired properties; if not, 
some variables of the model are updated and the field analysis is repeated, 
up to a degree of designer satisfaction. This procedure is cumbersome and 
time consuming. 
The goal  of automated optimal design (AOD), conversely, is to obtain a 
tight integration of the module devoted to the field analysis with the module 
containing the minimisation algorithm, so that the design process is fully 
automated. This means that the two modules are linked together in a loop. 
The analysis of field can be performed either by differential methods 
originating from Maxwell’s equations (finite-difference, finite-element 
method), or by integral methods amenable to Green’s theorems (boundary 
element method). In turn, numerical minimisation can be achieved by means 
of deterministic or evolutionary methods (see Chapter 2); the combination 
of any method for analysis and any method for minimisation gives origin to 
a variety of iterative procedures for solving an optimal design problem. 
Nowadays, most of commercially available codes devoted to 
electromagnetic field analysis are based on the finite-element method 
(FEM): they proved, in fact, to offer a general-purpose and flexible tool of 
field simulation. In particular, commercial codes are equipped with a user 
interface, which enables the designer to develop a model in two or three 
dimensions by means of graphical operations only. These features make the 
simulation environment rather friendly and easy to use; so, in practice, FEM 
has become the most popular one, mainly in an industrial centre for research 
and development. 
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4.8 A unifying view of analysis and synthesis 
 
In Section 4.3 it has been shown that the mathematical model of a steady-
state field problem is represented by the Poisson’s equation for electric or 
magnetic potential, subject to suitable boundary conditions. It is known that 
the solution of a given boundary-value problem minimises the energy 
functional of the field region: this corresponds to the principle of minimum 
energy for a physical system at steady state. The latter remark supports the 
alternative idea to obtain potential distribution by minimising the energy 
functional related to the field problem. 
To this end, let the following problem be considered: 

fup =∇⋅∇−  in Ω    (4.91) 

where f is the source density, p is the material property, and u is the 
potential, subject to 

u=const along Γ1      (4.92) 

and 

0
n
u

=
∂
∂  along Γ2      (4.93) 

with . The energy functional corresponding to (4.91) is 
defined as follows: 

Ω∂=Γ∪Γ 21

∫∫
ΩΩ

Ω−Ω∇⋅∇=χ dfuduup
2
1     (4.94) 

where uup
2
1

∇⋅∇  and fu are energy densities [Jm-3]. In (4.94) the first 

integral term accounts for the field-matter interaction, while the second term 
gives the energy coming from the field source. 
The first-order variation  of functional (4.94) with respect to potential u 
is given by: 

δχ

( ) =Ωδ−Ω∇⋅∇δ=δχ ∫∫
ΩΩ

dufduup
2
1      

( ) ( )[ ] =Ωδ−Ωδ∇⋅∇+∇⋅δ∇= ∫∫
ΩΩ

dufduupuup
2
1     

( ) ∫∫
ΩΩ

Ωδ−Ωδ∇⋅∇= dufduup     (4.95) 
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Considering the vector identity   

( ) vvv ⋅∇α+⋅α∇=α⋅∇      (4.96) 

with , uδ=α uv ∇= , and applying it to (4.95), one has: 

( ) ∫∫∫
ΩΩΩ

Ωδ−Ω∇⋅∇δ−Ω∇δ⋅∇=δχ dufduupduup   (4.97) 

Using Gauss’ theorem, (4.97) becomes: 

( )∫∫
ΩΓ

Ω+∇⋅∇δ−Γ
∂
∂

δ=δχ dfupud
n
uup    (4.98) 

where n is the outward unit-vector normal to Γ. 
Applying boundary conditions (4.92)-(4.93), one obtains: 

( )∫
Ω

Ω+∇⋅∇δ−=δχ dfupu      (4.99) 

Since steadiness of energy is reached when 0=δχ  for any u, the following 
condition holds: 

0fup =+∇⋅∇  in Ω       (4.100) 

Therefore, the minimisation of the field energy gives rise to the Poisson’s 
equation with relevant boundary conditions; the latter is the Euler’s equation 
of functional (4.94). 
Conversely, starting form Poisson’s equation, it is possible to obtain the 
variational equation (4.99) of energy functional (4.94). To this end, in the 
case of an elementary variation uδ  of potential u – variation which is 
supposed to fulfil boundary conditions –, the equation 

( ) 0ufuup =δ+δ∇⋅∇      (4.101) 

is considered. Moving from the local viewpoint to the global one, one has: 

( ) 0dufduup =Ωδ+Ωδ∇⋅∇ ∫∫
ΩΩ

   (4.102) 

Applying vector identity (4.96) to (4.102) with uδ=α , upv ∇= , it turns 
out to be: 

( ) ( ) =Ωδ+Ω∇⋅δ∇+Ω∇δ⋅∇ ∫∫∫
ΩΩΩ

dufdupudupu     

( ) 0dufdupudupu =Ωδ+Ω∇⋅∇δ+Ω∇δ⋅∇= ∫∫∫
ΩΩΩ

  (4.103) 
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Again, it is possible to apply Gauss’ theorem to the first term of (4.103), so 
obtaining: 

0dufdupud
n
uup =Ωδ+Ω∇⋅∇δ+Γ

∂
∂

δ ∫∫∫
ΩΩΓ

   (4.104) 

Due to boundary conditions, the firs term vanishes, so giving: 

0dufdupu =Ωδ+Ω∇⋅∇δ ∫∫
ΩΩ

    (4.105) 

or, equivalently: 

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ωδ+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω∇⋅∇δ ∫∫

ΩΩ

dfuduup
2
1      

0dfuuup
2
1

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω⎟

⎠
⎞

⎜
⎝
⎛ −∇⋅∇δ= ∫

Ω

    (4.106) 

for any u. The term under integral is the total energy density of the field 
region (material + source), the variation of which is zero in steady 
conditions. 
Overall, it has been proven that steadiness of energy is intrinsic to Poisson’s 
problem and vice versa. In other words, solving a Poisson-like problem is 
equivalent to minimising the associated energy functional. 
This result can be considered as a principle of unification between analysis 
and synthesis, because they give complementary tools to solve the same 
physical problem. 
More generally, the following remarks can be put forward. 

• It is possible to solve analysis problems by minimising a suitable 
energy functional; likewise, synthesis problems can be solved 
through the minimisation of an objective function expressing a 
performance criterion. So, at least from the theoretical viewpoint, 
minimisation is a general tool for problem solving. 

• In a sense, all field-dependent inverse-problems might be considered 
multiobjective in their essence, because it is always possible to solve 
an analysis problem by minimising the associated energy-functional 
and, similarly, a synthesis problem can be reduced to the 
minimisation of one or more objective functions.  

 


