Università degli Studi di Pavia

Corso di Modellistica Elettrica e Magnetica – A.A. 2009-2010

Complemento di traccia per lo sviluppo di un elaborato

Considerando una delle simulazioni di campo precedentemente sviluppate, si estrapoli un *cluster* di elementi triangolari (Fig. 1) in una regione fisicamente significativa del modello, allo scopo di verificare la bontà dell'approssimazione numerica agli elementi finiti.

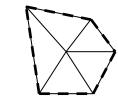
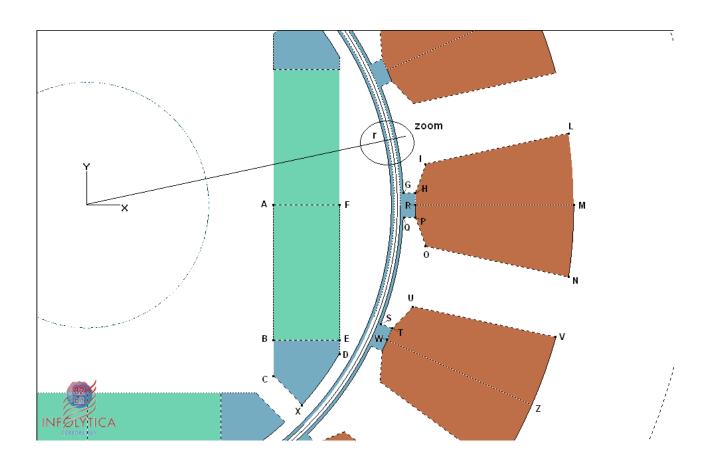
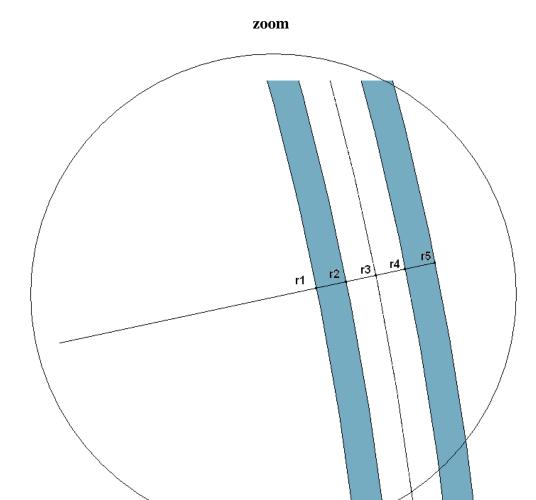


Fig. 1 – Esempio di *cluster* di elementi di discretizzazione (insieme di alcuni triangoli vicini).

In particolare, si stimino i seguenti indicatori di errore:


 $\epsilon_1 = \oint \overline{H} \cdot \bar{t} \, d\ell - I_c \ \text{lungo il bordo del } \textit{cluster}, \ \text{con } I_c \ \text{corrente concatenata};$

 $\epsilon_2 = \int \overline{B} \cdot \overline{n} \, dS \quad \text{attraverso il bordo del } \textit{cluster}.$


Si confrontino le cifre stabili di ε_1 e ε_2 rispetto allo zero macchina del processore utilizzato. Infine, si studi l'andamento dei due indicatori al variare della densità di reticolo.

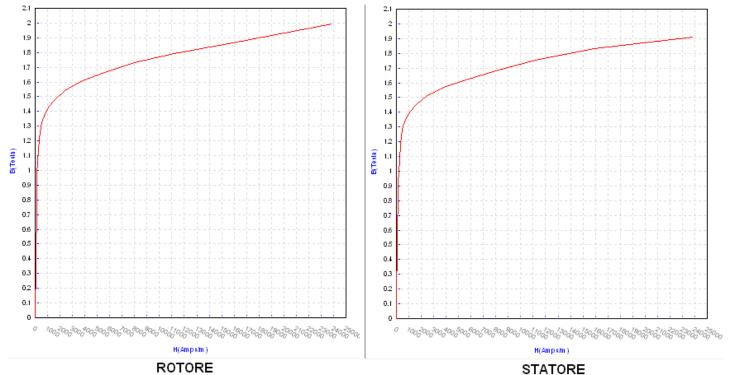
Università degli Studi di Pavia Corso di Modellistica Elettrica e Magnetica – A.A. 2009-2010

Traccia per lo sviluppo di un elaborato: dati tecnici

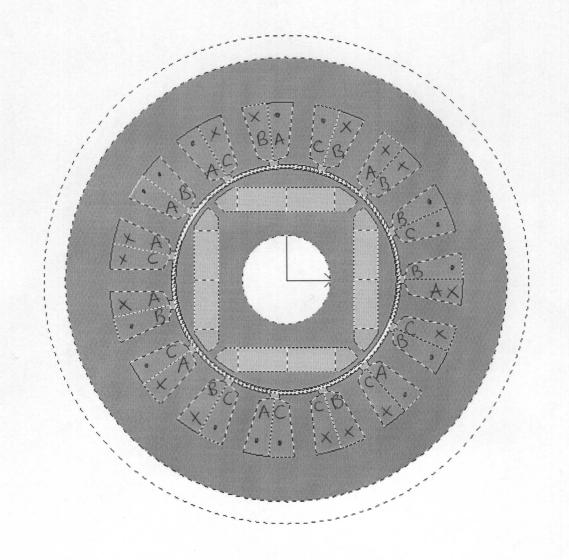
PUNTO	X [mm]	Y [mm]	PUNTO	X [mm]	Y [mm]
A	15.28	0	0	27.84	-3.36
В	15.28	-11	P	26.98	-1
С	15.28	-13.87	Q	25.98	-1
D	20.78	-12	R	26.99	0
E	20.78	-11	S	24.14	-9.65
F	20.78	0	T	25.05	-10.06
G	25.98	1	U	26.8	-8.25
H	26.98	1	V	38.53	-10.75
I	27.84	3.36	Z	36.54	-16.27
L	39.57	5.85	W	24.66	-10.98
M	40	0	X	17.66	-16.25
N	39.57	-5.85			

RAGGIO	[mm]
r1	25
r2	25.25
r3	25.5
r4	25.75
r5	26

Dimensioni esterne motore: Lunghezza Diametro 48.5 [mm] 100 [mm]


MATERIALI DEL MODELLO, (da libreria MagNet)

Rotore : M36: USS Electrical -- 24 Gage **Statore:** M19: USS Transformer 72 -- 29 Gage


Magneti: NdFeB: Neodimio Ferro Boro

Avvolgimenti di statore: Copper: 5.77e7 Siemens/meter

Caratteristiche B-H dei materiali ferromagnetici

M36: USS Electrical -- 24 Gage M19: USS Transformer 72 -- 29 Gage

FASE A: 200 Spire, I = 0,978 A

FASE B: 200 Spire, I = -0,309 A

FASE C: 200 Spir, Ic= -0,669 A