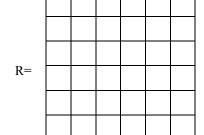
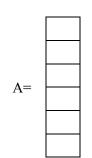
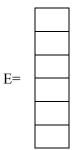
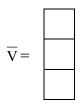

CORSO DI ELETTROTECNICA - APPELLO DEL 27/01/2017


Rispondere ai quesiti in forma numerica, indicando l'unità di misura nelle parentesi quadre, quando richiesto. <u>Tempo a disposizione: 90 minuti.</u> L'utilizzo del computer non è consentito.

ESERCIZIO 1




Del circuito in figura, si determinino la matrice di appartenenza ridotta M_r relativa alle tre maglie interne, la matrice R delle resistenze di lato, la matrice \overline{R} delle resistenze di maglia, i vettori $A,\ E$ e \overline{V} delle correnti impresse ai lati, delle tensioni impresse ai lati e delle tensioni impresse alle maglie, rispettivamente.



$$\overline{R} =$$

A = 2 mA

 $E_1 = 12 \text{ V}$

 $E_2 = 10 \text{ V}$

 $R_1 = 1.8 \text{ k}\Omega$

 $R_2 = 0.8 \text{ k}\Omega$

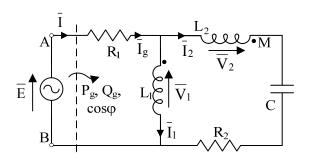
 $R_3 = 4 k\Omega$

 $R_4 = 0.6 \text{ k}\Omega$

 $R_5 = 0.5 \text{ k}\Omega$

Si calcolino, quindi, le correnti di maglia:

\bar{I}_{I} []	0.54	2.75	3.34	1.18
$ar{\mathrm{I}}_{\mathrm{II}}$ []	3.24	1.20	0.68	5.23
Īm []	3.33	1.23	8.91	5.01


Si deducano, inoltre, le correnti di lato:

I ₁ []	2.67	0.69	1.58	7.73
I ₂ []	10.1	8.56	1.91	5.25
I ₃ []	1.18	2.75	3.34	0.54
I ₄ []	-0.68	-3.34	-1.20	-5.23
I ₅ []	6.58	7.98	2.38	1.22
I ₆ []	8.91	5.01	1.23	3.33

Si determinino, infine, le potenze dei generatori:

P _A []	25.4	4.34	36.7	12.2	G	U
P _{E1} []	60.1	14.8	107	40.0	G	U
P _{E2} []	125	82.5	19.1	101	G	U

ESERCIZIO 2

 $\overline{E} = 220 \angle 30^{\circ} V$

f=100 Hz

 $R_1 = 75 \Omega$

 $R_2 = 50 \Omega$

 $C = 40 \mu F$

 $L_1 = 200 \text{ mH}$

 $L_2 = 120 \text{ mH}$

Caso 1: M = 0 (induttori non accoppiati). Dato il circuito in figura, si determini l'impedenza equivalente (forma cartesiana) ai morsetti A-B del generatore di tensione:

_			400 1000	
7[1	55 A ₋₁ 24 6	-12 5-i38 4	103+1363	75+j98.2
Zab I	JJ.T-12T.U	-12.J-J30. 4	1037 30.3	13 1 10.2
[3	5	3	3

Si calcolino le correnti \bar{I}_g , \bar{I}_1 e \bar{I}_2 e le potenze attiva P_g e reattiva Q_g , rispettivamente, determinando anche il

fattore di potenza $cos(\phi)$ del generatore:

$ar{\mathrm{I}}_{\mathrm{g}} \ []$	1.64-j0.69	1.99+j0.37	-4.05+j3.64	2.14+j2.93
$ar{ extsf{I}}_1 egin{bmatrix} & & & & \\ & & & & \end{bmatrix}$	-1.26-j3.54	0.85+j2.01	-0.45+j1.25	0.66-j0.33
$\bar{I}_2[$]	1.14-j1.64	1.33+j0.70	2.90+j2.85	-3.60+j2.39
$P_g[$]	200	419	604	812
Q _g []	55.2	257	148	99.0
cos (φ)	0.77	0.94	0.86	0.68

Considerando le approssimazioni di bassa frequenza $(\omega \to 0)$ e alta frequenza $(\omega \to \infty)$, rispettivamente, si determinino le approssimazioni delle impedenze equivalenti \overline{Z}_0 e \overline{Z}_∞ :

\overline{Z}_0 []	∞	75	125	0
\overline{Z}_{∞} []	0	8	75	125

Caso 2: M = 80 mH (induttori accoppiati). Si aggiorni il calcolo delle correnti \bar{I}_g , \bar{I}_1 e \bar{I}_2 e delle potenze attiva P_g e reattiva Q_g , rispettivamente, determinando anche il fattore di potenza $\cos(\varphi)$:

Ī _g []	2.07+j0.89	1.32-j2.45	-0.63-j3.47	-1.36+j0.07
$ar{ ext{I}}_1[]$	0.84+j0.06	2.25+j1.44	-3.14-j1.36	-0.88+j1.04
$\bar{\mathrm{I}}_2[]$	2.51-j2.11	1.24+j0.83	-0.48-j0.97	-0.93-j3.89
$P_g[$]	645	493	333	207
Q _g []	59.1	79.6	112	156
cos (φ)	0.58	0.88	0.99	0.76

Si determini, infine, l'impedenza equivalente (forma cartesiana) ai morsetti del generatore di tensione:

\overline{Z}_{AB} []	-40.3+j47.6	-2.32+j79.0	-136-j87.9	96.8+j11.6