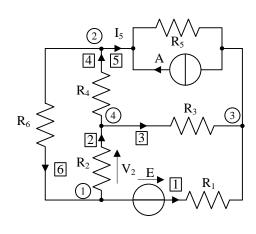
## CORSO DI TEORIA DEI CIRCUITI - APPELLO DEL 11/07/2013

E = 15 V  $R_1 = 0.5 \Omega$ 

 $R_2 = 1 \Omega$ 

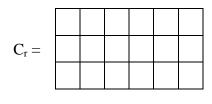
 $R_3 = 2 \Omega$ 

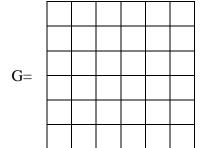

 $R_4 = 5 \Omega$ 

 $R_5 = 4 \Omega$ 

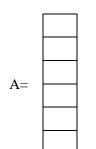
 $R_6 = 1 \Omega$ 

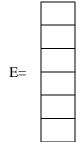
Rispondere ai quesiti in forma numerica, indicando l'unità di misura nelle parentesi quadre, quando richiesto. <u>Tempo a disposizione: 90 minuti.</u> L'utilizzo del computer non è consentito.


## **ESERCIZIO 1**




Dato il circuito in figura si determinino le tensioni di nodo (<u>usando il nodo 4 come riferimento</u>) distinguendo due casi.


Caso 1: A = 4 A. Del circuito in figura, determinare la matrice di incidenza ridotta  $C_r$ , la matrice G delle conduttanze di lato, la matrice  $\overline{G}$  delle conduttanze di nodo, i vettori A, E e  $\overline{I}$  delle correnti e tensioni impresse ai lati e delle correnti impresse ai nodi rispettivamente. Si calcoli, infine, la potenza dei generatori.

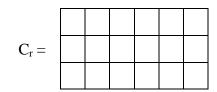

## Risultati caso 1:

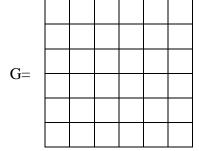


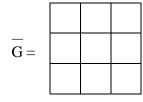


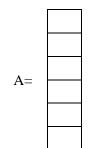
| $\overline{G} =$ |  |  |
|------------------|--|--|
|                  |  |  |

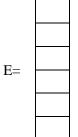






| _<br>I = |  |
|----------|--|
|          |  |

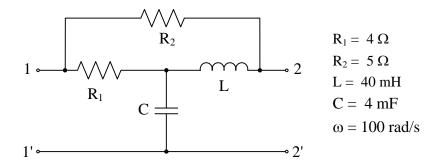

| $\overline{V}_1[ ]$             | 2.24  | -3.71 | 1.07  | -5.48 |
|---------------------------------|-------|-------|-------|-------|
| $\overline{V}_{2}$ [ ]          | 1.38  | -5.10 | -2.22 | 3.14  |
| $\overline{\mathbf{V}}_{3}$ [ ] | -0.28 | 4.82  | -5.73 | 6.88  |


| P <sub>A</sub> [ ] | 55.47  | 4.81  | 21.98  | 38.98  | G | U |
|--------------------|--------|-------|--------|--------|---|---|
| P <sub>E</sub> [ ] | 132.19 | 68.46 | 100.24 | 112.47 | G | U |


Caso 2: sia ora A un generatore di corrente comandato dalla tensione  $V_2$  ( $A = G_m V_2$ ,  $G_m = 6$  S). Determinare la matrice di incidenza ridotta  $C_r$ , la matrice G delle conduttanze di lato, la matrice  $\overline{G}$  delle conduttanze di nodo, i vettori A, E e  $\overline{I}$  delle correnti e tensioni impresse ai lati e delle correnti impresse ai nodi rispettivamente.














## **ESERCIZIO 2**



Si descriva, in forma cartesiana, il doppio bipolo passivo rappresentato in figura mediante i parametri [Z]:

| $\overline{Z}_{11}$ [ ]          | 1.25-j0.25 | 3.41+j2.47 | 2.51-j1.84 | 4.04+j0.28 |
|----------------------------------|------------|------------|------------|------------|
| $\overline{Z}_{22}[$ ]           | 2.51-j1.84 | 1.25-j0.25 | 3.14+j1.54 | 1.48+j0.84 |
| $\overline{\mathbf{z}}_{12}$ [ ] | 0.66-j1.01 | 1.54-j2.47 | 2.51+j1.30 | 0.23+j0.75 |
| $\overline{Z}_{21}$ [ ]          | 1.54-j2.47 | 0.23+j0.75 | 0.66-j1.01 | 2.51+j1.30 |

Si calcoli la pulsazione di risonanza  $\omega_{ris}$  del parametro  $\,\overline{Z}_{12} \colon$ 

| ω <sub>ris</sub> [ ] 139.54 | 400.00 | 257.16 | 319.70 |
|-----------------------------|--------|--------|--------|
|-----------------------------|--------|--------|--------|

Si studi il valore del parametro  $\overline{Z}_{12}$  al variare della pulsazione  $\omega$ :

| $\omega = 0$                | 0.00 | 2.00 | 5.00 | inf  |
|-----------------------------|------|------|------|------|
| $\omega = \omega_{ris}$     | 4.00 | 1.11 | 2.22 | 0.00 |
| $\omega \rightarrow \infty$ | inf  | 0.00 | 4.00 | 2.22 |

Si calcoli infine, in forma cartesiana, la tensione a vuoto alla porta 2 quando la porta 1 è alimentata da un generatore ideale di corrente  $\overline{A}_1 = 10 \angle 45^\circ$  A,  $\omega = 250$  rad s<sup>-1</sup>:

| $\overline{V}_2$ [ ] | 15.42-j16.32 | 8.64+j22.62 | 21.47+j2.01 | 2.41-j9.95 |
|----------------------|--------------|-------------|-------------|------------|
| ' 2 [ ]              | ŭ            | 3           | 3           |            |