
Cognome e Nome	
Matricola	Corso di Laurea

CORSO DI TEORIA DEI CIRCUITI - APPELLO - 13/07/2011 – I PARTE

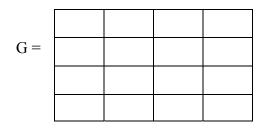
Ex D.M. 509 \Box Ex D.M. 270 \Box

Barrare la casella della risposta ritenuta esatta, indicando l'unità di misura nelle parentesi quadre. Tempo a disposizione: 90 minuti. L'utilizzo del computer non è consentito.

ESERCIZIO 1

$$A_1 = 10 \text{ A}$$

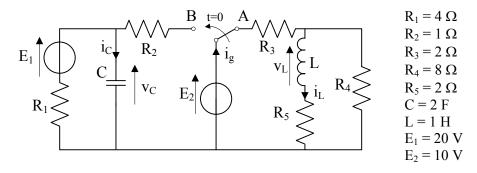
 $E = 15 \text{ V}$
 $R_2 = 0.25 \Omega$
 $R_3 = 0.1 \Omega$
 $R_4 = 0.4 \Omega$


Dato il circuito in figura si considerino i due casi seguenti:

Caso 1 – $A_2 = 5$ A. Del circuito in figura, determinare la matrice Cr di incidenza ridotta (prendendo il nodo "c" come nodo di riferimento), la matrice G delle conduttanze di lato, la matrice \overline{G} delle conduttanze di nodo, i vettori A, E e \overline{I} delle forzanti di corrente e tensione di lato e delle correnti impresse ai nodi, rispettivamente:

Si calcolino, inoltre, la tensione \overline{V}_a e la resistenza equivalente R_{eq} , tra i nodi a-c:

\overline{V}_a []	1.24	-2.67	-0.65	5.42
R _{eq} []	1.21	0.84	0.41	0.17


Caso 2 – $A_2 = k I_2$ (generatore dipendente) con k=0.75. Aggiornare la matrice G delle conduttanze di lato, la matrice \overline{G} delle conduttanze di nodo:

$\overline{G} =$	
J	

Si determini, infine, l'intervallo di valori del parametro k tale per cui il circuito abbia una unica soluzione:

ESERCIZIO 2

All'istante t=0 l'interruttore commuta da A a B. Si calcolino la corrente i_L , la tensione v_C e la corrente i_g negli istanti t=0⁻, t=0⁺ e t $\rightarrow \infty$, rispettivamente. Si calcolino, inoltre, la tensione v_L e la corrente i_C all'istante 0⁺.

i _L (0 ⁻)[]	-1.23	4.27	-3.47	2.22
v _C (0 ⁻) []	20.00	10.00	-20.00	15.00
i _g (0 ⁻) []	-1.29	0.49	2.78	-3.81
$i_L(0^+)[$]	2.22	-1.23	4.27	-3.47
$v_L(0^+)[$	30.41	-22.22	-12.95	15.94
$\mathbf{v}_{\mathrm{C}}\left(0^{+}\right)\left[\right]$	10.00	-20.00	20.00	15.00
i _C (0 ⁺) []	10.00	15.00	-5.00	-10.00
i _g (0 ⁺) []	5.00	-10.00	-5.00	15.00
$i_L(\infty)[$]	-2.00	5.00	0.00	-5.00
v _C (∞) []	3.00	6.00	15.00	12.00
i _g (∞) []	0.00	-2.00	5.00	0.58

Si determinino, infine, le due costanti di tempo τ_L e τ_C relative al transitorio del condensatore e dell'induttore, rispettivamente.

$ au_{ m L}$ []	0.80	0.50	0.10	0.30
τ _C []	1.60	0.81	2.58	0.10