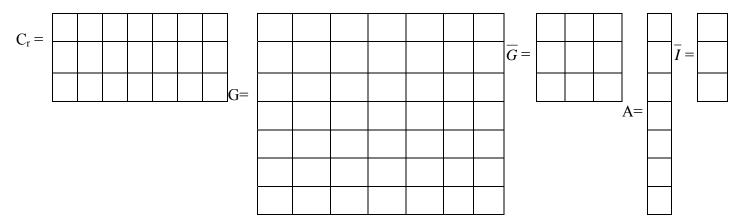
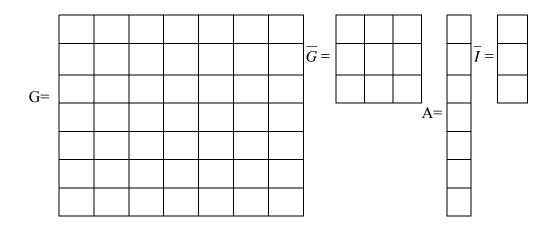

CORSO DI TEORIA DEI CIRCUITI - APPELLO - 13/07/2012


Barrare la casella della risposta ritenuta esatta, indicando l'unità di misura nelle parentesi quadre. Tempo a disposizione: 90 minuti.

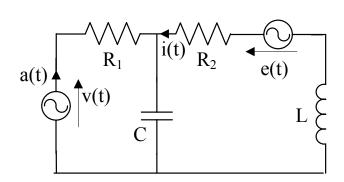
ESERCIZIO 1

Dato il circuito in figura si considerino i due casi seguenti:

Caso 1: $A_3 = 5$ A. Si determinino la matrice C_r di incidenza ridotta considerando il nodo 4 come nodo di riferimento, la matrice G delle conduttanze di lato, la matrice \overline{G} delle conduttanze di nodo, i vettori A delle correnti impresse di lato e \overline{I} delle correnti impresse di nodo, rispettivamente:


Si calcolino i potenziali di nodo $\overline{V_I}$, $\overline{V_2}$ e $\overline{V_3}$.

$\overline{\overline{V_I}}$ []	-1.25	2.84	-5.50	7.10
$\overline{V_2}$ []	-10.70	-8.51	-6.41	-2.14
$\overline{V_3}$ []	-2.00	-4.00	-6.00	-8.00


Si calcoli, quindi, il valore assoluto della potenza di ciascun generatore, specificandone il comportamento energetico (si barri G per generatore, U per utilizzatore):

$$P_{A1}$$
= _____ [] G U P_{A2} = ____ [] G U P_{A3} = ____ [] G U

Caso 2: $A_3 = G_M V_0$ (generatore dipendente) con $G_M = 2.5 S$. Si aggiornino la matrice G delle conduttanze di lato, la matrice \overline{G} delle conduttanze di nodo, i vettori A delle correnti impresse di lato e \overline{I} delle correnti impresse di nodo.

ESERCIZIO 2

e(t)=
$$10\sqrt{2}\cos(\omega_1 t + \pi/6)$$
 V
a(t)= $9\sqrt{2}\cos(\omega_2 t + \pi/4)$ A
 $\omega_1 = 300 \text{ rads}^{-1}$
 $\omega_2 = 650 \text{ rads}^{-1}$
 $R_1 = 1 \Omega$
 $R_2 = 2 \Omega$
 $C = 2 \text{ mF}$
Sin

L=4 mH

Si noti che i generatori non sono isofrequenziali

Dato il circuito in figura, si calcolino la tensione v(t) e la corrente i(t), distinguendo gli effetti dei due generatori. Per ciascun effetto si operi nel dominio dei fasori relativo alla pulsazione del generatore considerato, antitrasformando poi nel dominio del tempo.

Effetto di e(t):

	Modulo []				Fase φ [deg]			
$\overline{V}(\omega_1)$	2.14	8.11	5.98	0.84	-21.40	12.59	89.54	-46.87
$\bar{I}(\omega_1)$	8.41	6.41	2.87	4.87	30.00	43.13	-30.00	64.51

$$v_e(t) =$$
 [] $i_e(t) =$ []

Effetto di a(t):

	Modulo []				Fase φ [deg]			
$\overline{V}(\omega_2)$	5.48	20.47	13.31	10.39	6.71	55.87	-32.84	-60.00
$\overline{I}(\omega_2)$	2.55	5.55	7.55	0.55	35.84	92.53	112.84	58.98

$$v_a(t) =$$
 [] $i_a(t) =$ []

Si calcolino la tensione v(t) e la corrente i(t) complessive, sovrapponendo gli effetti nel dominio del tempo.

$$\mathbf{v}(\mathbf{t}) = \underline{\hspace{1cm}}$$

$$i(t) =$$