
| CORSI DI ELETTROT | ECNICA E TEORIA DEI CIRCUITI (sede di Mantova |
|-------------------|-----------------------------------------------|
| Matricola         | Corso di Laurea                               |
| Cognome e Nome    |                                               |

**APPELLO DEL 23/9/2011** 

## Esprimere tutti i risultati in forma numerica, indicando l'unità di misura tra parentesi quadre. Tempo a disposizione: 90 minuti.

## **ESERCIZIO 1**



Dato il circuito in figura si calcolino le tensioni  $V_{A1}$  e  $V_{A2}$  e la corrente  $I_4$ , distinguendo gli effetti dei tre generatori:

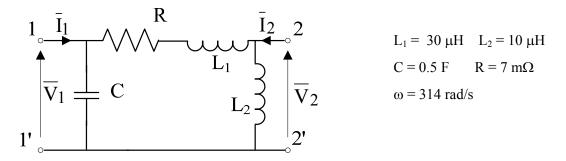
Effetto di  $A_1$ :  $V_{A1}$ '= \_\_\_\_\_[ ]  $V_{A2}$ ' = \_\_\_\_\_[ ]  $I_3$ ' = \_\_\_\_\_[

Effetto di  $A_2$ :  $V_{A1}$ ''= \_\_\_\_\_ [ ]  $V_{A2}$ ''= \_\_\_\_ [ ]  $I_3$ ''= \_\_\_\_ [ ]

Effetto di E:  $V_{A1}$ "= \_\_\_\_[ ]  $V_{A2}$ "= \_\_\_\_[ ]  $I_{3}$ "= \_\_\_\_[ ]

Si calcolino, infine, le potenze di ciascun generatore, specificandone il comportamento energetico (si barri G per generatore, U per utilizzatore) e anche la potenza  $P_r$  complessivamente assorbita dai resistori.

 $P_{A1} = \underline{\hspace{1cm}} [ \hspace{1cm} ]$ 


 $P_{A2} =$ 

 $P_E =$  [ ]

G U
G U

 $P_r =$  [ ]

## **ESERCIZIO 2**



Si descriva il doppio bipolo mediante i parametri [Y]:

$$\overline{Y}_{11} = \underline{\hspace{1cm}} [\hspace{1cm}] \overline{Y}_{22} = \underline{\hspace{1cm}} [\hspace{1cm}]$$

$$\overline{Y}_{12} = \underline{\hspace{1cm}} [\hspace{1cm}] \overline{Y}_{21} = \underline{\hspace{1cm}} [\hspace{1cm}]$$

Si determini la risposta in frequenza del doppio bipolo con riferimento al parametro  $\overline{Y}_{11}$ , calcolando la pulsazione di risonanza  $\omega_0$ :

$$\omega_0 =$$
\_\_\_\_[ ]

Si valuti il comportamento asintotico del doppio bipolo in bassa  $(\omega \rightarrow 0)$  e alta  $(\omega \rightarrow \infty)$  frequenza e il comportamento per  $\omega = \omega_0$  e se ne tracci qualitativamente il grafico:

$$\left|\overline{Y}_{11}\right|_{\omega\to 0} = \underline{\hspace{1cm}} \left[ \begin{array}{c} \\ \end{array} \right] \left|\overline{Y}_{11}\right|_{\omega\to \infty} = \underline{\hspace{1cm}} \left[ \begin{array}{c} \\ \end{array} \right] \left|\overline{Y}_{11}\right|_{\omega\to \omega_0} = \underline{\hspace{1cm}} \left[ \begin{array}{c} \\ \end{array} \right]$$

