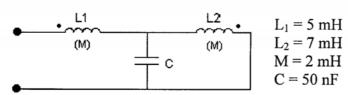

ELETTROTECNICA (Corsi di Laurea)

Prova in itinere del 30/5/2000

Cognome e nome:	_
Corso di Laurea:	_

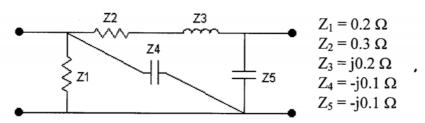
Crocettare le risposte che si ritengono corrette, indicando nella casella bianca l'unità di misura appropriata. **Durata della prova: 1.5 h.**

ESERCIZIO 1: risolvere il seguente circuito in regime p.a.s.



$\overline{V_C} =$					•	(3 punti)
10.3∠0°	1.15∠90°	5∠180°	40∠0°	0.135∠180°	20∠90°	

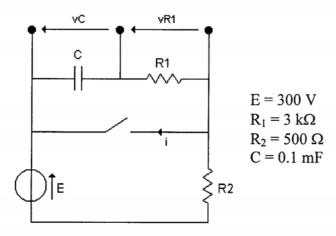
$\overline{I_L} =$						(3 punti)
5.4∠60°	2∠ - 2.29°	1.86∠-21.8°	1.96∠-11.3°	0.894∠-63.4°	10.2∠85°	


Po	otenza attiva		(3 punti)				
	20	10.3	17.2	4	50	19.2	

ESERCIZIO 2: trovare le pulsazioni di risonanza del seguente bipolo.

$\omega_{01} =$						(2 punti)
1.61×10^5	1.23×10^3	7.18×10^4	5.08×10 ⁴	2.27×10 ⁵	4.64×10^3	
		,				
$\omega_{02} =$		•				(2 punti)

ESERCIZIO 3: trovare i parametri Y del seguente doppio bipolo.



$Y_{11} =$						(2 punti)
7+j6	1+j2	7.5+j7.5	-3.14+j8	7.3+j8.46	7+j9	

$Y_{12} =$						(2 punti)
-2+j4	-2.5+j2.5	4-j5	-2+j	-2.3+j1.53	3.6+j9	

$Y_{22} =$						(2 punti)
2+j6	1+j5	2.5+j7.5	2.3+j8.46	3+j8	2+j9	

ESERCIZIO 4: risolvere il circuito nel transitorio successivo alla *chiusura* dell'interruttore.

τ (costante di	tempo) =					(2 punti)
0.1	0.2	0.5	0.3	0.4	0.6	
$v_{\rm C}(0^+) =$						(2 punti)
-150	100	-500	200	300	400	
$v_{C}(\tau)=$						(3 punti)
73.6	52.7	110	147	36.8	13.4	
$\underline{v_{R1}}(\infty) =$						(1 punto)
0	100	200	-300	400	-500	
i(∞) =						(1 punto)
-0.2	-2.1	-0.4	-1.2	-0.6	-0.8	