
CORSO DI TEORIA DEI CIRCUITI - II PROVA IN ITINERE - 24/6/2004

Barrare la casella della risposta ritenuta esatta, indicando l'unità di misura nelle parentesi quadre. Tempo a disposizione: 90 minuti.

Esercizio 1

e(t)=15
$$\sqrt{2}$$
 cos(314t - $\frac{\pi}{6}$) V

• A= 20 A

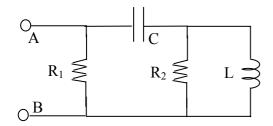
$$A = 20 A$$

$$t_1 = 7 \Omega$$

$$R_2 = 5 \Omega$$

$$L=12 \text{ mH}$$

$$C = 16 \mu F$$


Dato il circuito in figura, calcolare v(t) e i(t) per sovrapposizione degli effetti.

	Effetto del generatore A						
$v_A(t)[V]$	20	10	∞	0			
$i_A(t)[A]$	-11.67	11.67	-8.33	8.33			

	Effetto del generatore e(t)							
	Valore efficace				Fase [deg]			
$v_e(t) [V]$	\(0.28	0.28 2.8 -2.8 7.26			1 29.05	-50.95	-90	65.37
i _e (t) [A]	5.57 \(\sqrt{0.07} \) 1.23 \(0.62 \)				-180	-140.95	3 9.05	-24.63

$$v(t) = 0.28\sqrt{2}\cos(314t + 129.05\frac{\pi}{180}) [V] i(t) = -11.67 + 0.07\sqrt{2}\cos(314t + 39.05\frac{\pi}{180}) [A]$$

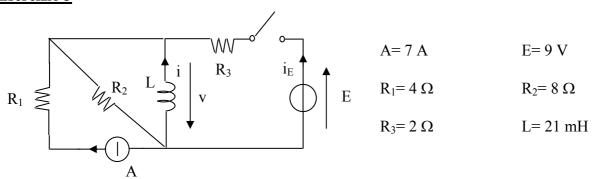
Esercizio 2

$$R_1 = \rightarrow \infty$$
 $R_2 = 50 \Omega$

$$C=100 \mu F$$
 L= 3 mF

Calcolare la pulsazione di risonanza ω_0 del bipolo in figura.

$\omega_0 [\text{ rad s}^{-1}] \mathbf{X} 1836.8$	6824.25	512.27	3281.07
--	---------	--------	---------


Calcolare inoltre l'ammettenza equivalente ai morsetti A-B in modulo ($|\overline{Y}_{eq}|$) e fase (θ_{eq}), per $\omega = 0$, $\omega = \omega_0$ e per $\omega \to \infty$ rispettivamente.

ω	$ \overline{Y}_{eq} [\Omega^{-1}]$				$\theta_{eq} \left[\begin{array}{c} deg \end{array} \right]$			
0	X 0	∞	0.02	0.2	45	X 0	-45	90
ω_0	1.67	0.12	8	0	Y 0	90	-90	180
$\rightarrow \infty$	0.02	0	0.67	∞	-45	45	Y 0	90

Utilizzando il risultato ottenuto nella precedente tabella, calcolare la potenza attiva (P) e reattiva (Q) erogate da un generatore ideale di tensione $\overline{E} = 12 \angle -30^{\circ}$ V, collegato ai morsetti A-B ed avente pulsazione ω_0 .

P[W]	512.57	¥ 240	37.4	0.84
Q[VAR]	-12.8	-36.47	X 0	89.28

Esercizio 3

All'istante t=0 l'interruttore si chiude.

Determinare dati iniziali e valori iniziali delle correnti i e i_E ed anche della tensione v.

i(0) [A]	X -7	0	7	1.75
$i(0^+)[A]$	1.75	7	-7 X	0
i _E (0 ⁻) [A]	Y 0	0.45	-0.9	0.9
$i_{E}(0^{+})[A]$	0.45	0	-0.9	0.9
v(0 ⁻) [V]	-7.2	-2.58	0 🗙	2.58
$v(0^+)[V]$	0	X -7.2	-2.58	2.58

Calcolare la costante di tempo τ del circuito e i valori di regime finale delle correnti i ed i_E ed anche della tensione v.

τ[ms]	¥ 13.1	-13.1	-16.1	16.1
i(∞) [A]	11.5	2.36	-11.5	-2.36
$i_{E}(\infty)[A]$	2.5	-6.8	4.5	8.23
v(∞) [V]	∞	X 0	1	3.62

Calcolare, infine, la corrente i all'istante $t=2\tau$.

i(2τ) [A]	-9.9	×	/ -10.9	-11.9	-12.9		