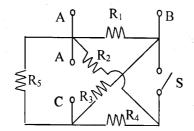
CORSO DI TEORIA DEI CIRCUITI - I PROVA IN ITINERE - 6/5/2005

Barrare la casella della risposta ritenuta esatta, indicando l'unità di misura nelle parentesi quadre. <u>Tempo a disposizione: 90 minuti.</u>

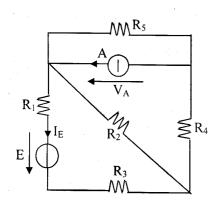
Esercizio 1

Trovare la resistenza equivalente ai capi dei morsetti come richiesto in tabella (S=0 interruttore aperto, S=1 interruttore chiuso).


$$R_1 = 5 \Omega$$

$$R_2 = 1 \Omega$$

$$R_3 = 3 \Omega$$


$$R_4 = 4 \Omega$$

$$R_5 = 6 \Omega$$

S	R _{AB} [Ω]			. R _{BC} [-2.]				
0	2.14	5	6.47	2.67 ●	2.16	1.17	3.11	5.17
1	0.75 ●	1.50	3.42	4.05	5	1.37 ●	0.25	3.53

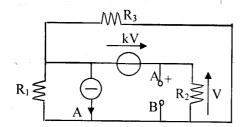
Esercizio 2

$$R_1 = 3 \Omega$$
 $R_2 = 5 \Omega$ $R_3 = 1 \Omega$ $R_4 = 2 \Omega$ $R_5 = 10 \Omega$
 $E = 15 V$ $A = 1 A$

Dato il circuito in figura, calcolare i contributi del generatore di tensione E e i contributi del generatore di corrente A alla corrente I_E e alla tensione V_A , rispettivamente.

	Contrib	uto di E	Contributo di A		
I _E [A]	0.64	2.76	0.39	4.05	
TE [71]	3.19	1.99	1.71	1	
$V_A[V]$	5.18	3.95	7.69	4.99	
	-7.09	-5.86 ●	1.18	2.97	

Calcolare il valore assoluto della potenza di ciascun generatore, specificando se il bipolo si comporta da generatore G o utilizzatore U.


$P_{E}[\mathcal{W}]$	35.7 ●	43.12	24.64	56.68
$P_A[w]$	18.01	6.47	2.88	8.19

Esercizio 3

Dato il circuito in figura, calcolare la corrente (I_{NO}) di Norton e la tensione (V_{TH}) di Thevenin ai morsetti A-B, rispettivamente.

\mathbf{R}_1	=	8	Ω

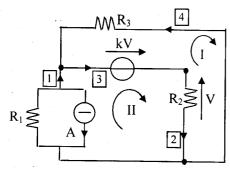
$$R_2 = 2 \Omega$$

$$R_3 = 6 \Omega$$

$$A = 4 A$$

$$k = 2$$

I _{NO} [A]	-2.44	-5.86 -4		• -7.25	
$V_{TH}[\checkmark]$	-19.2 ◆	-22.7	-9.52	-5.04	


Calcolare, quindi, la resistenza di Thevenin R_{TH}.

R _{mi} [O]	8 74	10	2.01	1.06
[K ^{LH} [7.7]	0.74	4.8	3.01	1.26

Supponendo il parametro di trasferimento k variabile, determinare:

la condizione per k tale per cui la resistenza di Thevenin sia positiva (R_{TH}>0)

Esercizio 4

$$R_1 = 8 \Omega$$

$$R_2 = 2 \Omega$$

$$R_3 = 6 \Omega$$

$$A = 4 A$$

k variabile

Del circuito in figura, determinare la matrice M di appartenenza ridotta, la matrice R delle <u>resistenze di lato</u>, la matrice \overline{R} delle <u>resistenze di maglia</u>, i vettori A ed E delle forzanti di corrente e tensione di lato, rispettivamente:

Trovare la condizione per il parametro di trasferimento k per cui la matrice R risulti invertibile:

N.B. - La numerazione e i versi convenzionali di lato e maglia sono quelli indicati in figura.