Simulation-Based Design in Electrical Engineering

Zoran Andjelić

2018

Simulation-Based Design in Electrical Engineering

- Introduction
- > Dielectric Design of HV Products
- Magnetics in Engineering Design
- Coupled Problem
- Optimization 1
- Optimization 2

El-Mech. Design

Dielectric Design

Thermal Design

- The second principle of thermodynamics postulates a heat transport from a body with high temperature to a lower temperature body
- Four different heat transport mechanisms:
 - thermal conduction -> Energy transport of molecules and electrons by diffusion and kinetic collisions (*heat transport within the body*)
 - thermal convection -> The energy is conducted to a fluid and as a result of a density change the fluid begins to flow
 - thermal radiation -> Known as electromagnetic radiation represented by the kinetic energy of atoms and molecules.
 - Any body above OK provides this radiation.
 - No need for heat transfer medium!
 - **phase transition** -> Energy needed to energize from one physical state to another

Ο

Equivalent to the electrical circuit approach

CAD-based Thermal Analysis

Analysis workflow

- Ratio between the heat flux and the thermodynamic driving force of the heat flow
- HTC is something called Temperature difference
- HTC[W/(m²•K)]

- 18 kA: short-time current test after 15 min
- Natural cooling

Model set-up

Thermal Design

Contacts arrangement in HECSPS

Heinrich R. Hertz: **Über die Berechnung elastischer Körper**, in Gesammelte Werke, Vol. 1,Leipzig, Germany 1895

4/30/2018

www.polopt.com

Table 9: Table of the final temperaturefor a test current of 18.0 kA after 10 min testing time

	5 10:27:03				ABB SCIW	sz - Hochspanni	ngstechnik Av	a			HOCHSTROM La	BOF PTHX-P	1	
/ersuch	isprotok	oll Erwa	rmunas	versuch										
Versuchst	pezeichnung	: 2005-00	6-04											
HECSI	PS Star	ting S	witch -	18kA	@ 50Hz	10min								
- Test Object: HECSPS Starting Switch						- Te	- Temperature Rise Test for 10 minutes or							
- Test Current: 18000 A						cor	conductor temperature of 250 °C (absolute)							
- Test Frequency: 50 Hz					- An	bient Air Te	mperature: 2	030 °C						
Run: 20 Timesta max. Grad	005-006- amp: 06.	04; Rec 04.2005 : NaN K/h	ord: 31 15:15: Tr	04 (0: et: REF s	15:00 aft	er start of m	easureme	ent)						
Run: 20 Fimesta max. Grad Name	005-006- amp: 06. lient: Chn. Value	04; Rec 04.2005 : NaN K/h unit	cord: 31 15:15: Tr	04 (0: et: REF_1	15:00 aft ean: 25.2 deg	e r start of m :: lame Value	easureme	ent)	Value	unit	Name	Value	unit	
Run: 20 Timesta max. Grad Name 101	005-006- amp: 06. lient: Chn. Value 126.3	04; Rec 04.2005 : NaN K/h unit degC	:ord: 31 15:15: Tr Name 102	04 (0: ef: REF_1 Value	15:00 aft ean: 25.2 deg unit t degC 1	er start of m	easureme unit degC	Name	Value 158.7	unit degC	Name	Value 153.5	unit degC	
Run: 20 Timesta max. Grad Name 101 106	005-006- amp: 06. lient: Chn. Value 126.3 149.9	04; Red 04.2005 : NaN K/h unit degC degC	15:15: Tr Name 102 107	04 (0: ef: REF v Valu	15:00 aft ean: 25.2 deg unit t degC 1 degC 1	er start of m lame Value 03 156.0 08 156.1	easureme unit degC 7 degC	Name	Value 158.7 165.3	unit degC degC	Name 105 110	Value 153.5 158.0	unit degC degC	
Run: 20 Timesta max. Grad Name 101 106 111	005-006- amp: 06. lient: Chn. Value 126.3 149.9 154.7	04; Rec 04.2005 : NaN K/h unit degC degC degC	ID2 112 Name 102 107	04 (0: ef: REF_0 115.9 53.2 152.4	15:00 aft ean: 25.2 deg unit degC 1 degC 1 degC 1	er start of m tame Value 03 156.0 08 156.1 13 153.0	easureme unit degC degC degC	Name 104 109 114	Value 158.7 165.3 147.6	unit degC degC degC	Name 105 110 115	Value 153.5 158.0 142.2	unit degC degC degC	
Run: 20 Fimesta max. Grad Name 101 105 111 116	005-006- amp: 06. lient: Chn. 126.3 149.9 154.7 142.3	04; Rec 04.2005 : NaN K/h unit degC degC degC degC	ID2 112 102 107 112 117	04 (0: ef: REF_0 115.9 53.2 152.4 194.1	15:00 aft ean: 25.2 deg unit degC 1 degC 1 degC 1 degC 1	er start of m tame Value 03 156.0 08 156.1 13 153.1 18 143.1	easureme unit degC degC degC degC	Name 104 109 114 119	Value 158.7 165.3 147.6 140.7	unit degC degC degC degC	Name 105 110 115 120	Value 153.5 158.0 142.2 142.1	unit degC degC degC degC	

Approach B (TH)

- HTC=10 [W/Km]
- Sink temperature = 20 [°C]

First (intuitive) try: Resize the gap size

Simplified representation of the "Contact Bridge"

Bridge contact: case 2

Colours: potential distr. Arrows: current flow

Concluding remarks

- Modelling of the "Contact bridge" is one of the crucial points in CAD-based thermal simulation!
- If we know the value of contact resistance R_{CB} than we can estimate the size of the "Contact bridge" volume V_{CB}!
- The form of the "Contact bridge" can be arbitrary, preserving that V_{CB} is kept!

Concluding remarks

• Going towards CAD-based thermal simulation requires some learning stages!

- Size of the V_{CB} can be tailored to the most appropriate geometry! (modelling issue!)
- Skilled CAD-designer can rather fast adapt the model for this type of analysis

Concluding remarks (cont.)

• FEM-based EM analysis

- Temperature with EC losses is converging towards temperature with MS losses!
- Mesh required for ¼ of FEM model already ½ million elements!

Already with Approach "B" (HTC), i.e. without complete CFD run, computed temperature is reasonable!

www.polopt.com

T_{max (measured)}= 152 °

Thermal design

Thermal Design

- Transformers are very efficient devices, with the conversion rate 0f 95-99% of the input power
- Two working regimes during the transformer operations are:
 - 1. Non-loaded regime:
 - Highly inductive device (like shunt reactor)
 - Characterized by two types of losses:
 - Eddy losses (due to induced voltages in the laminations)
 - Hysteresis losses (due to molecular composition (aligning) of the iron core
 - 2. Loaded regime:
 - Characterized by
 - Winding loses (I²R)
 - Stray losses (due to leakage flux interaction with the surrounding structures like bus-bars, clamps, ...)

The heat generated by the no-load and load losses is the main source of temperature rise in the transformer!

IEEE C57.12.00-2000 standard

some numbers ...

ABB: total losses in power transformers = 300.000 kW

1500 USD / kW

1% of 300.000 kW **→** 4.5 MUSD saving

Thermal Design

How to approach loss / overheating problem?

Real physical cycles

Simplified representation

Power Transformers

Exc. Currents – Eddy currents – Skin effects – Proximity effect Losses – Forces...

Some (more) physics ...

Simulation in Thermal Design : Critical Issues

-78 a'E

EM

Material-dependent EM field diffusion Treatment of multi-material layered structures (Cu/Fe) Skin-effect treatment Multi-connected problem treatment Non-linearity $\mu = \mu$ (H) Total losses (eddy, hysteresis, domain losses)

TH

Cooling impact treatment via HTC Contact problems Radiation

Modeling / Computation

- Huge aspect ratio in overall dimensions
- •Thin / complex tank & bus-ducts structures
- Parallelization required for daily desing

Thermograph scan of the LV bus-

bars

4/30/2018

Coupled EM-TH Problem

Steady-state problem (EM)

Formulation: $H - \varphi$

$$\operatorname{rot}\operatorname{rot}\mathbf{H}^{+} + i\omega\sigma\mu\cdot\mathbf{H}^{+} = 0 \quad \forall \mathbf{r} \in \Omega^{+}, \quad \operatorname{Equivalent currents} \quad \operatorname{Equivalent charges} \\ \frac{1}{2}J_{m}(\xi) + \frac{1}{4\pi}\oint_{\Gamma}\vec{n}_{\xi}\times\left[J_{m}(\eta)\times\nabla_{\xi}K(\xi,\eta)\right]d\Gamma - \frac{1}{4\pi}\oint_{\Gamma}\sigma_{m}(\eta)\left[\vec{n}_{\xi}\times\nabla_{\xi}G(\xi,\eta)\right]d\Gamma = -\vec{n}_{\xi}\times H^{0}(\xi) \\ \frac{1}{2}\sigma_{m}(\xi) - \frac{1}{4\pi}\oint_{\Gamma}\sigma_{m}(\eta)\left[\vec{n}_{\xi}\cdot\nabla_{\xi}G(\xi,\eta)\right]d\Gamma + \frac{\mu_{i}}{4\pi\mu_{a}}\oint_{\Gamma}\vec{n}_{\xi}\cdot\left[J_{m}(\eta)\times\nabla_{\xi}K(\xi,\eta)d\Gamma\right] = -\vec{n}_{\xi}\cdot H^{0}(\xi) \\ \frac{1}{4\pi\mu}e^{-\beta r} G(\xi,\eta) = \frac{1}{4\pi r}e^{-\beta r} G$$

Stationary problem (TH)

$$div (\lambda \operatorname{grad} T(\mathbf{r})) = 0 \quad \forall \mathbf{r} \in \Omega$$
 Heat transfer coefficients Eddy losses
 $\lambda \left[\frac{1}{2} \theta(\mathbf{r}) T_1(\mathbf{r}) + \int_{\Gamma} T_1(\mathbf{r}') \cdot \frac{(\mathbf{r} - \mathbf{r}')}{4\pi \|\mathbf{r} - \mathbf{r}'\|^3} \cdot \mathbf{n}(\mathbf{r}') d\Gamma \right] + \alpha \int_{\Gamma} T_1(\mathbf{r}') \cdot \frac{1}{4\pi \|\mathbf{r} - \mathbf{r}'\|} d\Gamma$
 $= \int_{\Gamma} \dot{q}(\mathbf{r}) \frac{1}{4\pi \|\mathbf{r} - \mathbf{r}'\|} d\Gamma \quad \forall \mathbf{r} \in \Gamma.$

Main features:

 complex windings / bus-bars structures

(complex magnitude) – inner view

Main features:

- complex windings / bus-bars structures
- different magnetic/nonmagnetic materials included => different magnetic field penetration depth

Main features:

- complex windings / bus-bars structures
- different magnetic/nonmagnetic materials included => different magnetic field penetration depth
- huge aspect ratio in dimensions
 - 5-20 mm (tank thickness)
 - 4-6 m (overall tank dimensions)

Eddy current distribution (complex magnitude) -detailed view on the inner shielding details-

Robust / physics-sensitive meshing preferred!

Thermal Design: Validation

- 985 MVA Transformer,
- Nuclear GSU unit, Commonwealth Edison, Chicago, 2002

Analysis of temperature hot-spots in the transformers' bus-ducts:

Calculated temperature hot-spots caused by the eddy-current losses

Bus-ducts

SIMULATION

MEASUREMENT

0400/2001 T-2 - Unit 2 Main Power Transformer Bus Duct Connections - A Phase Closest Outside Temp - 56 Deg F 825 MWe - 154 Vars - 1329 Amps C06.TIF

