
Computational Intelligence and

Evolutionary Algorithms (EAs)

We treat an EA here as a search and optimization tool

Evolutionary Algorithms as

Optimizers

begin
t := 0;
Initialize P(t);
Evaluate P(t);
while not Terminate
do
 P'(t) := Selection (P(t));
 P''(t) := Variation (P'(t));
 Evaluate P''(t);
 P(t+1):= Survivor (P(t),P''(t));
 t := t+1;

od
end

Evolutionary Algorithm

Operators

Initialization of a set of candidate solutions:
Population

Create new solutions by:

Reproduction: Copy good individuals

 (Survival-of-the-fittest principle)

Recombination or Crossover:

 ≥ 2 parents  ≥ 1 offspring

Mutation: 1 parent  1 offspring

Evaluation of solution: Objective function  Fitness

Uses an elite-preservation principle

Binary-Coded Genetic

Algorithms

Genetic Algorithms (John Holland, 1962)

Design of a can for minimum cost having at least V
volume

Objective function: Cost

Constraint: Volume

Representation in binary strings:

Fitness: objective value + penalty for constraint

42),(2ddhhdf  

4004/2 hd

Genetic Algorithm: A Hand

Simulation

Fitness = Cost + Penalty (proportional to constraint violation)

Random Initialization Population after Selection

Tournament Selection Operator

Variation Operators

Crossover operator:

 Mutation operator:

Good, partial information propagates leading to optimum

Other and modified operators often used

Advantages of EAs

Applicable in problems where no (good) method is
available

Discontinuities, non-linear constraints, multi-modalities

Discrete variable space

Implicitly defined models (if-then-else)

Noisy/dynamic problems

Most suitable in problems where multiple solutions
are sought

Multi-modal optimization problems

Multi-objective optimization problems

Parallel implementation easier

Disadvantages of EAs

No guarantee for finding optimal solutions in a
finite amount of time

However, asymptotic convergence proofs are
available

For specific problems, computational complexity
worked out

Parameter tuning mostly by trial-and-error:

 Self-adaptation

Population approach may be expensive:
Parallelism

EAs in Engineering Optimization

Handling mixed variables: Boolean, discrete, real
etc.

Handling non-linear constraints

Handling large-scale problems

Handling multi-modal problems

Handling multiple conflicting objectives

Handling computationally-expensive problems

Handling uncertainties

Handling Mixed Variables

Level-wise application in
classical methods

No need for level-wise
optimization with EAs

A mixed representation
possible:
(1) 14 23.457 (101)

Recombination and
mutation can be used
variable-wise

How to handle real-
parameters in EAs?

Real-Parameter Evolutionary

Algorithms

Decision variables are coded directly, instead of using
binary strings

Recombination and mutation need structural changes

 

 

1 2

1 2

.............

.............

n

n

x x x

y y y

Simple exchanges are not adequate

Recombination Mutation

?   ?................21 nxxx

Different Real-Parameter

Evolutionary Algorithms

Evolution strategy (ES):
Correlated self-adaptive evolution strategies

Covariance Matrix Adaptation (CMA)

Differential evolution

Particle swarm optimization (PSO)

Real-parameter genetic algorithms
BLX, UNDX, SBX, SPX, arithmetic crossover,
Gaussian mutation etc.

Simulated Binary Crossover

(SBX)
Step 1: Choose a random number

Step 2: Calculate :

Step 3: Compute two offspring:

 0,1 .u

q

 

 

1

1

1

1

2 , if 0.5

1
, otherwise

2 1

c

c
q

u u

u














  
    

    

    

1 1 2

2 1 2

0.5 1 1

0.5 1 1

q q

q q

c p p

c p p

 

 

   

   

Properties of SBX Operator

If parents are distant, distant

offspring are likely

If parents are close, offspring

are close to parents

Self-adaptive property

Mutation Operators

Random mutation

Normally distributed

mutation

Non-uniform mutation

