
Computational Intelligence and 

Evolutionary Algorithms (EAs) 

We treat an EA here as a search and optimization tool 



Evolutionary Algorithms as 

Optimizers 

begin   
t := 0;  
Initialize P(t);   
Evaluate P(t);   
while not Terminate   
do   
 P'(t)   := Selection (P(t)); 
 P''(t)  := Variation (P'(t)); 
 Evaluate P''(t); 
 P(t+1):= Survivor (P(t),P''(t)); 
  t := t+1; 

od 
end 



Evolutionary Algorithm 

Operators 

 

Initialization of a set of candidate solutions: 
Population 

Create new solutions by: 

Reproduction: Copy good individuals  

     (Survival-of-the-fittest principle) 

Recombination or Crossover:  

     ≥ 2 parents  ≥ 1 offspring 

Mutation: 1 parent   1 offspring 

Evaluation of solution: Objective function  Fitness 

Uses an elite-preservation principle 



Binary-Coded Genetic 

Algorithms 
 

Genetic Algorithms (John Holland, 1962) 

Design of a can for minimum cost having at least V 
volume 

Objective function: Cost  

Constraint: Volume  

Representation in binary strings: 

Fitness: objective value + penalty for constraint 

42),( 2ddhhdf  

4004/2 hd



Genetic Algorithm: A Hand 

Simulation 

Fitness = Cost + Penalty (proportional to constraint violation) 

Random Initialization Population after Selection 



Tournament Selection Operator 



Variation Operators 

Crossover operator: 

 Mutation operator: 

Good, partial information propagates leading to optimum 

Other and modified operators often used 



Advantages of EAs 

Applicable in problems where no (good) method is 
available 

Discontinuities, non-linear constraints, multi-modalities 

Discrete variable space  

Implicitly defined models (if-then-else) 

Noisy/dynamic problems 

Most suitable in problems where multiple solutions 
are sought 

Multi-modal optimization problems 

Multi-objective optimization problems  

Parallel implementation easier 



Disadvantages of EAs  

No guarantee for finding optimal solutions in a 
finite amount of time 

However, asymptotic convergence proofs are 
available 

For specific problems, computational complexity 
worked out 
 

Parameter tuning mostly by trial-and-error:  

    Self-adaptation 
 

Population approach may be expensive: 
Parallelism 



EAs in Engineering Optimization 

 

Handling mixed variables: Boolean, discrete, real 
etc. 

 

Handling non-linear constraints 
 

Handling large-scale problems 
 

Handling multi-modal problems 
 

Handling multiple conflicting objectives 
 

Handling computationally-expensive problems 
 

Handling uncertainties 



Handling Mixed Variables 

Level-wise application in 
classical methods 

No need for level-wise 
optimization with EAs 

A mixed representation 
possible: 
(1) 14 23.457 (101) 

Recombination and 
mutation can be used 
variable-wise 

How to handle real-
parameters in EAs? 
 



Real-Parameter Evolutionary 

Algorithms 

Decision variables are coded directly, instead of using 
binary strings 

 

Recombination and mutation need structural changes 
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Recombination Mutation 
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Different Real-Parameter 

Evolutionary Algorithms 

Evolution strategy (ES):  
Correlated self-adaptive evolution strategies  

Covariance Matrix Adaptation (CMA)  

 

Differential evolution  

 

Particle swarm optimization (PSO)  

 

Real-parameter genetic algorithms  
BLX, UNDX, SBX, SPX, arithmetic crossover, 
Gaussian mutation etc.  



Simulated Binary Crossover 

(SBX) 
Step 1: Choose a random number  
 

 

Step 2: Calculate  : 

 

 

 

 
 

 

Step 3: Compute two offspring: 
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Properties of SBX Operator 

If parents are distant, distant 

offspring are likely 

 

If parents are close, offspring 

are close to parents 

 

Self-adaptive property 



Mutation Operators 

Random mutation 

 

 

Normally distributed 

mutation 

 

 

Non-uniform mutation 


