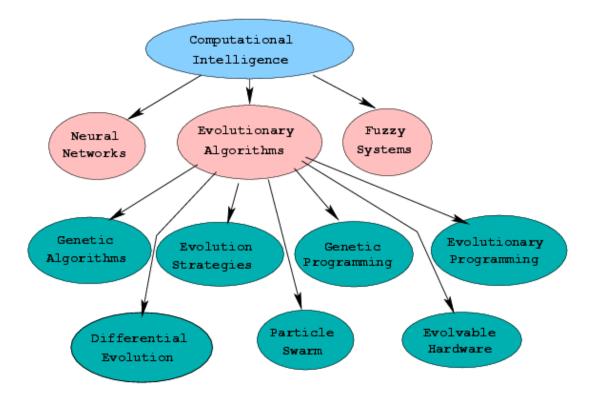
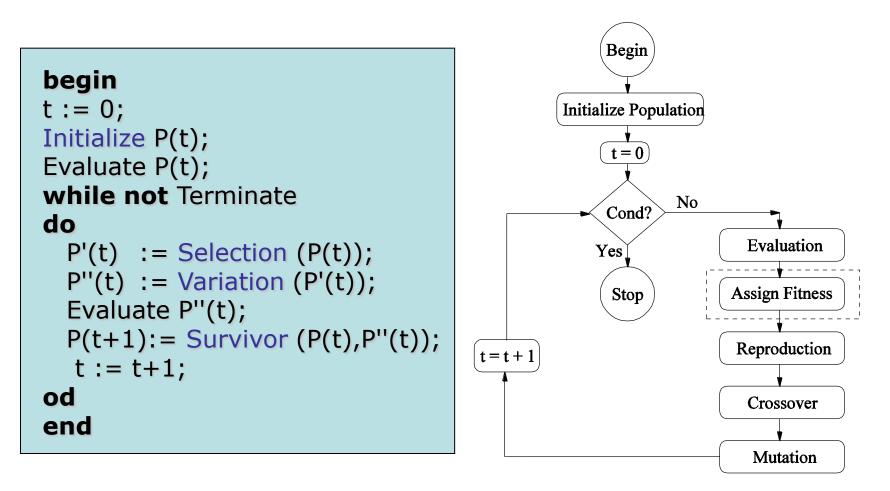
Computational Intelligence and Evolutionary Algorithms (EAs)



We treat an EA here as a search and optimization tool

Evolutionary Algorithms as Optimizers



Evolutionary Algorithm Operators

- Initialization of a set of candidate solutions: Population
- Create new solutions by:
 - Reproduction: Copy good individuals (Survival-of-the-fittest principle)
 - Recombination or Crossover:
 - \geq 2 parents \rightarrow \geq 1 offspring
 - Mutation: 1 parent \rightarrow 1 offspring
- Evaluation of solution: Objective function \rightarrow Fitness
- Uses an elite-preservation principle

Binary-Coded Genetic Algorithms

- Genetic Algorithms (John Holland, 1962)
- Design of a can for minimum cost having at least V volume
- ▶ Objective function: Cost $f(d,h) = \pi dh + 2\pi d^2/4$ ▶ Constraint: Volume $\pi d^2 h/4 \ge 400$
- Representation in binary strings:
- Fitness: objective value + penalty for constraint

$$\underbrace{23}_{\downarrow} \underbrace{\uparrow}_{h}^{h}$$

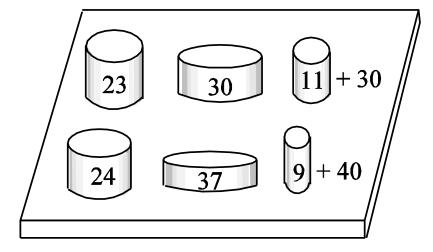
(d, h) = (8, 10) cm(Chromosome) = 0 1 0 0 0 0 1 0 1 0

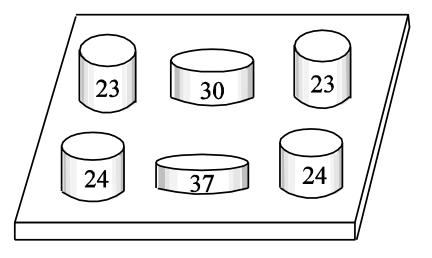
Genetic Algorithm: A Hand Simulation

Fitness = Cost + Penalty (proportional to constraint violation)

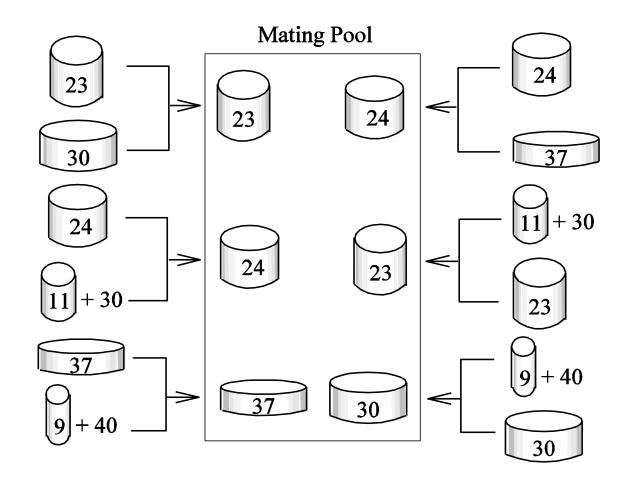
Random Initialization

Population after Selection



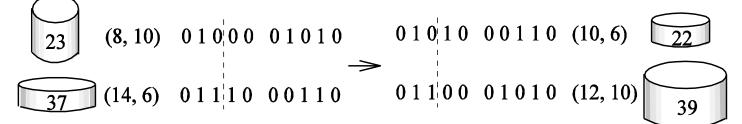


Tournament Selection Operator



Variation Operators

Crossover operator:



Mutation operator:

- Good, partial information propagates leading to optimum
- Other and modified operators often used

Advantages of EAs

- Applicable in problems where no (good) method is available
 - Discontinuities, non-linear constraints, multi-modalities
 - Discrete variable space
 - Implicitly defined models (*if-then-else*)
 - Noisy/dynamic problems
- Most suitable in problems where multiple solutions are sought
 - Multi-modal optimization problems
 - Multi-objective optimization problems
- Parallel implementation easier

Disadvantages of EAs

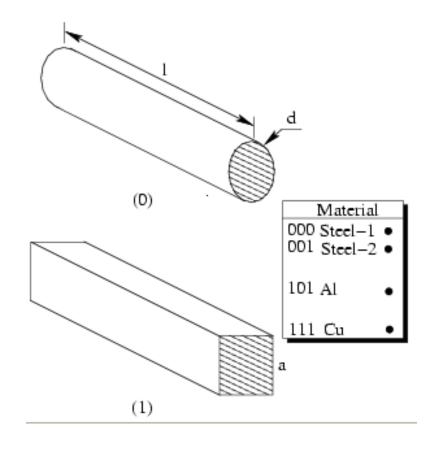
- No guarantee for finding optimal solutions in a finite amount of time
 - However, asymptotic convergence proofs are available
 - For specific problems, computational complexity worked out
- Parameter tuning mostly by trial-and-error: Self-adaptation
- Population approach may be expensive: Parallelism

EAs in Engineering Optimization

- Handling mixed variables: Boolean, discrete, real etc.
- Handling non-linear constraints
- Handling large-scale problems
- Handling multi-modal problems
- Handling multiple conflicting objectives
- Handling computationally-expensive problems
- Handling uncertainties

Handling Mixed Variables

- Level-wise application in classical methods
- No need for level-wise optimization with EAs
- A mixed representation possible: (1) 14 23.457 (101)
- Recombination and mutation can be used variable-wise
- How to handle realparameters in EAs?



Real-Parameter Evolutionary Algorithms

- Decision variables are coded directly, instead of using binary strings
- Recombination and mutation need structural changes

Recombination

Mutation

$$\begin{pmatrix} x_1 x_2 \dots x_n \\ y_1 y_2 \dots y_n \end{pmatrix} \implies ? \qquad (x_1 x_2 \dots x_n) \implies ?$$

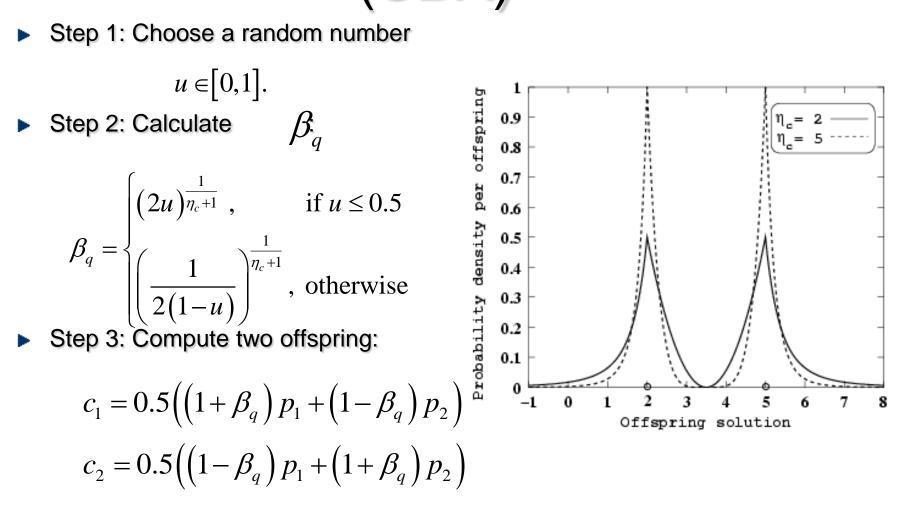
Simple exchanges are not adequate

Different Real-Parameter Evolutionary Algorithms

Evolution strategy (ES):

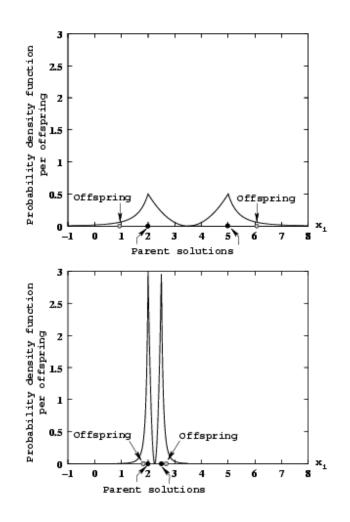
- Correlated self-adaptive evolution strategies
- Covariance Matrix Adaptation (CMA)
- Differential evolution
- Particle swarm optimization (PSO)
- Real-parameter genetic algorithms
 BLX, UNDX, SBX, SPX, arithmetic crossover, Gaussian mutation etc.

Simulated Binary Crossover (SBX)



Properties of SBX Operator

- If parents are distant, distant offspring are likely
- If parents are close, offspring are close to parents
- Self-adaptive property



Mutation Operators

