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A Copernican revolution: 

from direct to inverse problems  
• In engineering science, direct problems are defined 

as those where, given the input or the cause of a 
phenomenon or of a process in a device, the purpose is 
that of finding the output or the effect. 
 

• Conversely, inverse problems, are those where, given 
the measured or expected output or effect, one 
wants to determine the input or the cause. 
 

• The two types of problems, when applied to the same 
phenomenon or process, represent the two logical 
ways of conceiving it: from input to output or the 
other way round. 

 
 



Classification of inverse problems 

In electromagnetism, inverse problems may appear in 
either of two forms: 

 
• given measured data in a field region, to recover the 

relevant sources or boundary conditions or material 
properties (identification or parameter-estimation 
problems); 
 

• given the prescribed field in a device, to determine 
sources or b.c. or materials or shape of the device, 
producing the specified performance (synthesis or 
optimal design problems). 



Insidiousness of inverse problems  
 From the mathematical viewpoint, following the Hadamard 

definition (1923), well-posed problems (or properly, correctly posed 
problems) are those for which: 

 
• a solution always exists; 
• there is only one solution; 
• a small change of data leads to a small change in the solution. 
 
 Ill-posed problems, instead, are those for which: 
• a solution may not exist; 
• there may be more than one solution; 
• a small change of data may lead to a big change in the solution. 
 
 The last property implies that the solution does not depend 

continuously upon the data, which often are measured quantities 
and therefore are affected by noise or error. 
 

  



Ill-posed problems: remarks 

• Identification problems have always a solution at least, while a 
solution may not exist for optimal design problems; this happens 
when e.g. the prescribed quantity does not fit with the data. 
 

• On the contrary, if multiple solutions exist to a given problem, 
they might be similar, differing by e.g. a degree of agreement of 
field model to supplied data. 
 

• Even if the agreement is very good, it might happen that the 
solution is unstable: a small perturbation in the data causes a 
large oscillation in the solution.  

 
 All these reasons make inverse problems more insidious than 

direct problems. 
 



Inverse problems and design problems 

• Any design problem can be formulated in 
mathematical terms as an inverse problem. 

 
• In particular, optimal shape design problems, which 

are very popular in all branches of engineering, belong 
to a group of inverse problems where the purpose is 
to find the geometry of a device which can provide a 
prescribed behaviour or an optimal performance. 

 
• The ultimate goal is to perform an automated optimal 

design (AOD), when the solution is obtained 
automatically in terms of the required or best 
performance.  
 



Solving an inverse problem 

by minimising a functional  

• In general, the nv unknowns x of an inverse problem are called design variables or 
degrees of freedom. The design variables may be geometric coordinates of the 
field region or values of sources or parameters characterizing the region. 

 
• The solution to an inverse problem is generally performed by means of the 

minimisation of a suitable function f(x) called objective function, or cost 
function, or design criterion. This function may represent some performance 
depending on the field, or simply the residual between computed and prescribed 
field values (error functional).  

 
• In mathematical terms, the problem reads: 
 given         
 find     
  
 where x0 is an initial guess. Properly speaking, it is a problem of unconstrained 

minimisation; to be more meaningful, it is assumed that f is limited in W. 
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Constrained minimisation  

• The objective function should fulfil constraints, 
which may be expressed as equalities, inequalities and 
side bounds. Formally, the problem can be stated as 
follows: 

   given        
   find     
   subject to     

                                      
      
• Constraints and bounds set the boundary of the 

feasible region W associated with function f(x), and 
define implicitly its shape in the nv-dimensional design 
space.  
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Insidiousness of minimisation 

• Classical optimality requires the following first-order 
necessary condition, better known as Kuhn-Tucker 
theorem (1951): 

 Let     be a local minimum point for f(x) and let f, gi , 
hj differentiable functions. Then, there exists a 
vector                    of multipliers such that   
 
 
 

• This is a sufficient condition for     to  be a global 
minimum point if f(x) is a convex function and W is a 
convex region.  
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Geometric interpretation 

of KT conditions 

 

(constraint g3 is not active in 

x* and therefore 3=0) 



Insidiousness of minimisation (2) 

• In computational electromagnetism, it happens that 
functions f, gi and hj are known only numerically as  a 
set of values at sample points; therefore, classical 
assumptions about differentiability and convexity 
cannot be assessed. 
 

• In particular, when the assumption of convexity is not 
applicable, f might exhibit some local minima in 
addition to the global minimum. 

 
• Moreover, the numerical approximation of the 

gradient is time consuming; moreover, it is a potential 
source of fatal inaccuracies. 



An alternative: evolutionary computing 

• Darwinian evolution is intrinsically a robust search; it 
has become the model of a class of optimisation 
methods for the solution of real-life problems in 
engineering. 

 
• The natural law of survival of the fittest in a given 

environment is the model to find the best design 
configuration fulfilling given constraints. 

 
• The principle of natural evolution inspired a large 

family of algorithms that, through a procedure of 
self-adaptation in an intelligent way, lead to an 
optimal result (Goldberg, 1989). 



Evolutionary computing (2) 

• A primary advantage of evolutionary computing is its 
conceptual simplicity. 

• A very basic pseudo-code of a typical algorithm: 
 

i)    initialize a population of individuals; 
ii)   randomly vary individuals; 
iii)  evaluate fitness of each individual; 
iv)  apply selection; 
v)   if the terminating criterion is fulfilled 
   then stop, else go to step ii). 



Evolutionary computing (3) 

Evolutionary computing algorithms are: 

• easy to implement; 

• gradient-free; 

• global-optimum oriented. 

 On the other hand, they are rather slow 
and costly, because of the high number 
of function evaluations required to 
converge. 



An evolution strategy of lowest order 

Evolution strategy 
mimics the survival 
of the fittest 
individual that is 
observed in nature.  
 
The flow-chart of an 
algorithm (in which a 
single parent 
generates a single 
offspring) is here 
presented. 

  



  

  

The new point is generated in this interval. 

Generation of a new design point 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Gaussian pdf  
of the old point Gaussian pdf 

of the new point 



Insidiousness of minimisation (3) 

The No-Free Lunch (NFL) theorem (Wolpert and Macready, 1997) 

There is no best algorithm, 

whether or not it is evolutionary  

Whatever an algorithm gains in 
performance on a class of problem, 
is necessarily lost by the same 
algorithm in the other problems 

performance 

average 

dedicated algorithm 

general-purpose algorithm 

problem 



FIELD-BASED OPTIMAL SHAPE DESIGN 

Design vector x represents the geometry of the device to be synthesized.  
 
Generally, j-th objective function fj , j = 1,nf is a field-dependent quantity. 
 
The following mapping applies: 
 
 
 
 
 
 
The minimisation problem reads: find            
 
subject to nc field-dependent constraints 
 
 
In a problem of shape design, two aspects are always involved: the optimal 
synthesis of field s which takes place in the device, and the optimal design of 
device geometry x. 
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Numerical solution 
to design problems: AOD 

 A procedure of 
AOD requires, as a 
rule, a routine for 
calculating the 
field, which is 
integrated in a 
loop with a routine 
optimising the 
objective function. 
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Numerical solution 
to design problems (2) 

• The device to be optimised is represented by a numerical model 
in two or three dimensions (i.e. a grid of nodes and elements). 
 

• The main flow of the computation is driven by the optimisation 
routine (e.g. evolution strategy). Starting from x0 , an iterative 
procedure updates the current design point xk in xk+1 . 

 
• Given xk+1 , the routine of field analysis generates a new finite-

element grid, the field simulation is restarted and the evaluation 
of f(x) is so updated. 
 

• If the procedure converges, the result could represent either a 
local minimum or the global minimum or simply a point better 
than the initial one, because f has decreased; in the latter case, 
a mere improvement (and not the optimisation) of f has been 
achieved. 
 



Numerical solution 
to design problems (3) 

• Usually, the analysis of field can be performed either by 
differential methods originated from Maxwell equations (finite-
difference method, finite-element method), or by integral 
methods derived from Green theorem (boundary-element 
method). 

 
• In turn, numerical optimisation can be achieved by means of 

deterministic (i.e. gradient-based) methods or evolutionary (i.e. 
gradient-free) methods. 

 
• Nowadays, most of commercially available codes devoted to 

electromagnetic field simulation are based on the finite-element 
analysis (FEA): they proved, in fact, to offer a general-purpose 
and flexible tool of field simulation. 

 



Numerical solution 
to design problems (4) 

• Commercial FEA codes are equipped with a user interface, which 
enables the designer to develop a model in two or three 
dimensions by means of graphical operations only. 

 
• These features make the simulation environment rather friendly 

and easy to use; so, in practice, FEA has become the most 
popular tool, mainly in an industrial centre for R&D. 

 
• The combination of any method for analysis and any method for 

minimisation gives origin to a variety of iterative procedures for 
solving an optimal design problem. 
 



Multiobjective formulation 
of a design problem 

Often, in electromagnetic design, multiple objective functions should 

be optimised simultaneously. 

These problems belong to the category of multi-objective or 
multi-criteria. Their formulation is characterized by a vector of 
objective functions. 

Formally, considering nv variables and nf objectives, one has: 
 
given                , find    
 
subject to nc inequality  and ne equality constraints 
 
         
and to 2nv side bounds 
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Mapping from design space to objective space 

nv - dimensional nf - dimensional 



Preference function formulation 

Traditionally, the multiobjective problem is reduced to a single-objective 
one by means of a preference function       , e.g. the weighted sum of the 
objectives: 
    
 
 
with  
 
        should be minimised with respect to  
subject to the problem contraints.  

The hierarchy attributed to the i-th objective can be modified by 
changing the corresponding weight ci . For a given set of weights, the 
relevant solution, if any, is assumed to be the optimum. 
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Paretian optimality (1) 

   The most general solution to the design problem is given by the front of 

Pareto-optimal solutions  

Solutions for which the decrease of an objective is 
not possible without the simultaneous increase of at 
least one of the other objectives 

This means to have a family of solutions to be compared 



Paretian optimality (2) 

A solution is said to dominate another one if the first is better than the second with 

respect to one objective, without worsening all the other objectives. 

Two solutions are indifferent to each other if the first is better than the second for 
some objectives, while the second is better than the first in all the other objectives. 

f1 

f2 

y1 
y2 

y3 
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y5 y6 

indifferent 

indifferent 

dominated 
(worse) 

dominating 
(better) 



Paretian optimality (3) 

Given two solutions xj and xk 

 

situation   consequence 

xj dominates xk    xj is better than xk 

xk dominates xj    xk is better than xj 

none of the two   xj and xk are indifferent 



Two key definitions 

Let              be an objective space. Then, a point 
is said to be Pareto optimal if no point           exists 

such that           dominates         . 

Let                  be a vector of nf objectives, 
with design space            and objective space           : 
the set                                     is the Pareto front (PF); 
the set                           is the Pareto set (PS). 
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Correspondence between PF and PS 

The PS topology depends on the Y to X inverse mapping: 
it might form e.g. a set of islands 

In practice, the objective space Y is the control space 

Metric criteria to identify non-dominated solutions in 
the design space X  



Dominance dihedral 

Orthogonal sector in the objective space: 

• has its vertex at a given point y0 ; 
• contains all the points yk such that F-1(yk) dominates F-1(y0). 

If the dihedral is empty, 
then F-1(y0) is said to be 
non-dominated. 

y0 
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The objective space: 
a geometric interpretation in 2D  

utopia point 

nadir point 

anti-utopia point 
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Nadir point 

Metric matrix (nf=3) 

nf SO optimisations 

Utopia point 

HIGHER-ORDER DIMENSIONALITY nf>2  



Scalarizing distance 

Possible preference functions 

UR 

Open problem: 

spacing of Pareto-optimal solutions along the front 

gi(x) user-defined goal 
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Geometric classification of the PF in 2D  (1)  

Typical topologies 
of front 

PF as a function of 
of nf -1 objectives: 

Ad hoc  optimisation algorithms 
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Non-uniformly sampled PF 
(deceptive topology) 

Non-linear objective functions 

Geometric classification of the PF in 2D  (2)  



Multimodal optimisation problems 

non-convex objective functions 

local fronts, in addition to the global front 

local front 

global front 



A solution j constraint-dominates a 
solution k, if any is true: 

Handling constraints 

j is feasible and k is not; 
 
j and k are both infeasible, 
but j has a smaller constraint 
violation; 
 
j and k are feasible and j 
dominates k. 

Constraint-dominance principle (parameter-less) 

Penalty function method (conventional)   0,)()()(
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Constrained MOOP 
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Problem 

Solution 

Classical methods 

Pareto optimality 
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Classical Approach:  

Weighted Sum Method 
Construct a weighted 
sum of objectives and 
optimize 
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Difficulties with Classical Methods 

Nonuniformity in Pareto-optimal 

solutions 

Inability to find some solutions 

Epsilon-constraint method still 

requires an       -vector         
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The -formulation reads: 
 

given a set of nf-1 values  

subject to 

 

    

find 



USING EVOLUTIONARY ALGORITHMS 

• Population approach suits well to find 
multiple solutions 

 

• Niche-preservation methods can be 
exploited to find diverse solutions 

 

• Implicit parallelism helps provide a 
parallel search 

 

 

 

• Shape of Pareto front is not a matter 
(e.g. non-convexity, disconnectedness) 



 

Modify the fitness 

computation 

 

Emphasize non-dominated 

solutions for convergence 

 

Emphasize less-crowded 

solutions for diversity 

POPULATION-BASED APPROACH 

WHAT TO CHANGE IN A BASIC GA ? 

Elitist  Non-dominated Sorting Genetic 

Algorithm (NSGA-II) 



INDIVIDUAL-BASED APPROACH 

WHAT TO CHANGE IN A BASIC ESTRA ? 

Multiobjective Evolution Strategy 

(MOESTRA) 
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(y2 , y3) are accepted, y4 is 

rejected 

domination dihedral wrt y1 

Modify the acceptance criterion of the 

offspring 



Two main streams can be observed 

•use approximation 

techniques  

•identify a surrogate model of 

objectives and constraints  

then 

•use an evolutionary 

algorithm to optimize 

•preserve the use of FEA (very 

flexible ! ) to solve the direct problem, 

but  

 

•reduce the solution time of field 

analysis  

  

•implement cost-effective strategies 

 

 

 well suited for an industrial 

R&D centre 

PRACTICAL METHODS TO SOLVE EMO IN 

ELECTROMAGNETISM 



SURROGATE MODELS 
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Predictor formula 

global basis function local basis function 

ms+ns sampled points 

Scalarizing  methods 

Combine the surrogates of multiple objectives into a preference 

function; then, single-objective optimisation. 

 

Non-scalarizing methods 

consider the surrogate of each objective individually; then, non-

dominated solutions. 
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CASE STUDY 

Permanent-magnet generator for 

automotive applications. 

A very similar device was used as the 

alternator on board of fast cars for 

sport competitions. 

Design problem: identify the shape of the device such that 

 

• power loss in copper windings 

 

• power loss in the iron core  

 

are minimum. 
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Constraint  :  load 500 W, no-load peak voltage 50 V , speed 9,000 rpm  

W1 copper volume 

W2 iron volume 



NSGA-II AND MOESTRA IN ACTION 

sampled Pareto front 

prototype 

NSGA-II: 20 individuals 

MOESTRA: 1 individual 

P. Di Barba and M. E. Mognaschi, “Industrial Design with Multiple Criteria: Shape Optimization of a 

Permanent-Magnet Generator”, T-MAG, vol.45, 2009  

NSGA-II and MOESTRA, after 6,300 s NSGA-II, after 10 gen.s 

(2 runs, 20+20 ind.s) 



Left: prototype solution, right: 
a Pareto optimal solution. Iron specific-loss curve. 

Magnetization curve of iron core. Detail of the FE mesh. 



NON-CONFLICTING MULTIPLE OBJECTIVES 

An axisymmetric antenna 

for magnetic induction tomography 

Optimal design problem 

Find the antenna shape, identified by variables (a,d,), such 

that: 

the magnetic field along the antenna axis (z>0) is 

maximum, and simultaneously 

the stray field behind the antenna (z<0) is minimum. 

Frequency dependent field 



NON-CONFLICTING MULTIPLE OBJECTIVES (II) 

Optimisation results for f = 10 kHz 

 

Optimisation results for f = 100 kHz 

The optimum is unique (zero-dimensional Pareto front) 



HIGHER-ORDER DIMENSIONALITY nf>2  (I) 

Method of orthogonal projections 

Unpractical for identifying P-optimal solutions 

Effective for objective space representation 

Design points are mapped in all possible 2D subspaces 

  ji,n,1j,i,f,f fji 



HIGHER-ORDER DIMENSIONALITY nf>2  (II) 

Design variables 
rotor inner radius 
rotor slot width 

Objectives 
static torque, to be max 
torque ripple, to be min 
radial force (friction), to be min 

The device 
Electrostatic 
microactuator 

E. Costamagna, P. Di Barba, A. Savini, Shape design of a MEMS device by Schwarz-

Christoffel numerical inversion and Pareto optimality, COMPEL, vol. 27, 2008  



OPEN PROBLEMS IN EMO: BENCHMARKING 

Some goals of benchmarking : 
 
•Move from test problems to industrial benchmarks 
 
•Investigate topological properties of the PF (convex/non-convex, 
connected/non-connected, uniformly/non-uniformly spaced) 
 
•Define suitable metrics to measure the distance of a given solution 
point from the front 

In EMO, evaluating the performance of an optimisation algorithm 
and assessing results is a challenging task. 



Possibly, the multiobjective formulation of TEAM problems 22 and 25 
should be improved. 
 

•Handle non-comparable solutions properly 
 

prototype 

maximise By in the air gap 
  
minimise Bx in the winding 

Shape design of a 
magnetic pole 

Pareto better 
solutions 

Pareto 
indifferent 
solutions 

OPEN PROBLEMS IN EMO : BENCHMARKING (II) 



DESIGN SENSITIVITY AND MOSD 

Evaluate the sensitivity of a solution in the objective space 
(especially, along the PF) with respect to a perturbation in 
the design space. 



DESIGN SENSITIVITY AND MOSD 

Numerically derived sensitivity 
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PERFORMANCE VS SENSITIVITY 

A maglev device 

Design variables 
dimensions of 
permanent 
magnets and 
field correctors 

Dependence of 
Pareto front on 
force sensitivity s 
 
s<0.1 
 
 
s<0.15 

Objectives 

• levitation force 

• supercon area 



      

The adaption rate 0<<1 of the 

FE mesh is ruled by the 

annealing operator of a basic 

evolution strategy.  

 

 

A low-cost mesh is generated 
when a large search radius is 
taken on and, conversely, a 
finer mesh is generated when 
a small region is investigated.  

A multi-scale evolutionary search 
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d0 initial search tolerance 

df final search tolerance 

k iteration index 

q annealing rate 



CASE STUDY 

Fixed vs variable adaption 

(fixed =0.15, variable 0.02<<0.2) 

x=[10.33, 1.01, 2.30, 7.99, 2.87] mm 

f=[4.55, 160] mW 

x=[10.87, 0.97, 2.11, 6.83, 3.05] mm 

f=[4.36, 150] mW 

Stopping criterion: search tolerance < 10-6 

larger search radius 



CASE STUDY (II) 

Objective function history 

Fixed adaption Variable adaption 



CASE STUDY (III) 

User-defined  accuracy: the optimisation stops when 0k,2,1i,
f

f
)k(

i0

ki
i 

x=[10.18, 1.06, 2.38, 

8.03, 2.95] mm 

1=0.75, 2=0.4 

x=[10.81, 0.99, 2.09, 

6.84, 3.07] mm 

1=0.65, 2=0.36 

k=43 

k=49 

Prescribed  = 0.75 



CASE STUDY (IV) 

User-defined time: the optimisation stops after e.g. 1 hour 

x=[9.70, 1.21, 2.40, 7.93, 3.00] mm 

f1=5.5 mW, f2=179.3 mW 
11 iterations done in 1 hour 

Improvement: 20% for f1 , 60% for f2  



Fixed adaption 

Variable adaption 

CASE STUDY (V) 



An a priori method to provide the designer with a single optimum. 
 
Each player minimises his own objective by varying a single variable and 
assuming that the values of the remaining n-1 objectives are fixed by 
the other n-1 players. If it happens that no player can further reduce 
his objective, it means that the system has converged to an 
equilibrium.  

  

AN ALTERNATIVE: NASH GAMES 
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Let W and Wi be the global design space and the design space of the i-th objective, 

such that  
 

 is a Nash equilibrium (NE) if  
  



2D analytical 
test case 
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Pareto solutions   
unlike  parallel gradients   

Nash equilibrium   
orthogonal gradients   
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NASH GAMES: NUMERICAL IMPLEMENTATION 

Player 1 optimizes f1(x1,x2) acting on x1 
and receiving x2 from player 2 at the 
previous iteration; then, player 1 sends 
the result to player 2. 

Player 2 optimizes f2(x1,x2) acting on x2 
and receiving x1 from player 2 at the 
previous iteration; then, player 2 sends 
the result to player 1. 

The game is over (Nash equilibrium) 
when neither player 1 nor player 2 can 
further improve their objectives. 



Design variables :  
height and width of magnet 

PM THREE-PHASE MOTOR 

P. Di Barba, Strategies of game theory for the automated optimal design in electromechanics, Intl J of 
Applied Electromagnetics and Mechanics 27 (2008) 1-21 

Air gap 

Laminated 
rotor 

Laminated 
stator 

Slot 

NE initial (a) 

NE final (b) 

NE final (c) 

o  global P-solutions 
◊  local P-solutions 

Objectives for no-load operation: 
cogging torque (to be min), air-gap radial induction (to be max) 



Design variables : 

(a1,a2,a3,a4)  

The problem reads: find the time-dependent family of non-dominated 
solutions from t = 0+ to steady state such that 

• air-gap induction is maximum  

• power loss in the winding is minimum 

under the constraint that 

the power loss in the pole and the core at a given time instant (t=10-2t) is 
not greater than the power loss in the winding.  

Time constant depends on geometry  

FROM STATIC TO DYNAMIC PARETO FRONTS 

Shape design of a 
magnetic pole 
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time-unconstrained (circle) and  
time-constrained (star) fronts  

time-unconstrained (circle) and  
time-constrained (star) fronts  

The energy constraint, active in the first part of the transient magnetic 
diffusion, influences the Pareto front shape at any subsequent time instant !  

P. Di Barba, A. Lorenzi, A. Savini, Dynamic Pareto fronts and optimal control of geometry in a problem of 
transient magnetic diffusion, IET Science, Measurement and Technology, 2008, vol.2, no.3, 114-121 

Objective space at t = t Objective space at steady state 

FROM STATIC TO DYNAMIC PARETO FRONTS (II) 



Geometry and flux lines of a non-dominated solution at steady state (time-unconstrained PF) :  

f1 = 846.031 mT, f2 = 40.073 mT (prescribed f1 = 850 mT); a1 = 32 mm, a2 = 45 mm, a3 = 6 mm, a4 = 25 mm. 

 

Geometry and flux lines of a non-dominated solution at steady state (time-constrained PF) :  

f1 = 855.773 mT, f2 = 84.628 mT (prescribed f1 = 850 mT); a1 = 22 mm, a2 = 72 mm, a3 = 19 mm, a4 = 24 mm. 

FROM STATIC TO DYNAMIC PARETO FRONTS (III) 

Also the 

solution 

shape is 

different ! 

Time unconstrained 

Time constrained 



FROM STATIC TO DYNAMIC PARETO FRONTS (IV) 

If the energy constraint is not active, the problem becomes adynamic. 



MOVING ALONG THE PARETO FRONT 

John necessary condition: 

Pareto optimal solution     satisfies  
 

 1.             and 
 

 2.   
 

Requires differentiable objectives and constraints 

Outlines the existence of some common properties among 
Pareto-optimal solutions 

If objectives fi(x), i=1,nf are convex and W is a convex region, 

the condition is sufficient too. 
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MOVING ALONG THE PARETO FRONT (II) 

knee 

min f1 

min f2 

P. Di Barba, M.E. Mognaschi, Sorting Pareto solutions: a principle of optimal design for 
electrical machines, COMPEL, vol. 28, 2009 



BEYOND EMO 

Evolutionary, genetic and migratory algorithms, 
often employed in MOO, are powerful, but 
affected by some inherent limits, the most 
evident of which is the absence of theoretical 
proofs of convergence. 



BEYOND EMO (II) 

Individuals of a population-based method of optimisation run towards 
improvement through a randomness guided by a set of possible 
heuristics. 

 

An alternative way is developing a statistical method to identify the 
regions of the X space – the most interesting one to the designer – 
which are more likely to map onto P-optimal solutions. 

 

The designer, then, should be provided not with a large collection of 
supposed-optimal individuals, but with a distribution of probability in 
the X space, which yields optimal configurations with a given degree 
of certainty.  



BEYOND EMO (III) 

A formulation of a MOO problem could rely on the Bayes theorem, the 

goal being just shaping some probability surfaces, to identify the 

most promising candidate regions for P-optimal solutions.  

The problem is no more in terms of an evolving population of 

individuals, but covering the search space with a probability density, 

to eventually know what subsets are likely to be a part of the PS.  



BEYOND EMO (IV) 

Let an optimisation process have already produced some individuals, 
among which the non-dominated ones have been ranked out. 

 

Then, given a point belonging to the X space, its probability of 
belonging to the P-set is proportional to its probability of mapping 
onto a non-dominated point in the Y space, times the probability that 
a non-dominated point be P-optimal.  



BAYESIAN IMAGING AND MO PROBLEMS 

    
       

  Ixp

IypI,yxp
I,xyp






“x belongs to the PS”  

“y belongs to the PF”  

Given the a priori  information I 
and defined the two propositions: 

normalizing constant 

stopping term: the probability for 
any point y to belong to the PF 

forward mapping term 

backward mapping term the Bayes theorem reads 

  Xx,x 

  Yy,y 



BAYESIAN IMAGING AND MO PROBLEMS 

SHAPE DESIGN OF A LINEAR ACTUATOR 
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OPTIMISATION RESULTS (I) 

F-space sampling (circle), with 
relevant PF (star), and PF derived 
after optimisation (triangle).  



OPTIMISATION RESULTS (II) 

PS projected on the 
(h1,h2) plane after 
optimisation  

Other optimal solutions can be generated at zero cost, 
by means of new extractions, until the requirements of 
the designer in terms of likelihood are met.  



Pareto optimality and MEMS design 
 
Fostered by the development of new technologies, micro-electro-
mechanical systems (MEMS) are massively present on board of vehicles, 
within information equipment, in manufacturing systems as well as in 
medical and healthcare equipment.  
 
The miniaturisation of electromechanical systems will impact our society 
as deeply as did the mass production of electronic systems in the latest 
forty. 
 
However, only in more recent times has the design of MEMS been 
approached in a systematic way employing automated optimal design. 
 
Accordingly, the design problem is set up as a problem of non-linear 
multi-objective optimization of design criteria subject to a set of 
constraints.  
 
The approach implies suitable computational environments made available 
by the progress in artificial intelligence, where modelling tools are 
integrated with soft computing tools . 
 



Comb drive MEMS  

3D geometry 

10 fixed electrodes  (u=1V) 

9 movable electrodes (u=0 V) 

grounded substrate 



fixed electrode 

(supplied) 

x-direction 

movable 

electrode 

(grounded) 

ground plane 

dielectric gas 

g 

wm 

g/2 g/2 

wf 

z1 z2 

hm 

s.a. 

hf 

z 

y x 

s.a. 

Comb drive MEMS: cross-sectional view 



Comb drive MEMS  

Field analysis 

Laplace equation + Maxwell stress tensor 



Mesh characteristic Value 

Minimum element quality 0.2818 

Average element quality 0.7927 

Tetrahedral elements 170840 

Triangular elements 34468 

Edge elements 2812 

Vertex elements 172 

Maximum element size 2.64 μm 

Minimum element size 0.0264 μm 

Resolution of curvature 0.2 

Resolution of narrow regions 1 

Maximum element growth rate 1.3 

 

Comb drive MEMS - FE mesh 



Comb drive MEMS  

Force simulation 

Approximately, it turns out to be:  
 

Fz=k(z-z0) 
 

Drive force Fx vs x-directed 
displacement (main effect) 

Levitation force Fz vs z-directed 
displacement (side effect) 

movable electrode 
equilibrium height z0 

“electrostatic spring” 
Constant k 



Comb drive MEMS - Optimal design problem 

Optimal shape design problem 
  
The goal of the optimal shape design problem is to find the family of geometries 
which maximise the x-directed drive force between movable and fixed 
electrodes, and simultaneously mimimise the z-directed levitation force 
(electrostatic spring  effect). 
  
  
Four-dimensional design space 
  
Design variables: width and height of movable and fixed electrodes, respectively. 
Design vector a = (wm,wf,hm,hf). 
Range: from 2 to 8 m. 
Discrete-valued (step 0.1 m). 



Comb drive MEMS - Optimal design problem (II) 

Two-dimensional objective space 
  
Vector of objective functions  F = (f1,f2) with 
  
drive f1(a) = Fx(x,a) for z = 0 and -13 ≤ x ≤ 0 m, 
 to be maximised with respect to a, 
 
levitation f2(a) = Fz(z,a) for x = -13 m and 0 ≤ z ≤ 4 m, 
 to be minimised with respect to a. 
  
Both f1 and f2 are subject to the solution of the field analysis problem.  



Comb drive MEMS - Optimal design results 

z0 



Comb drive MEMS - Optimal design results 

X and F coordinates of individuals in the final generation 

Width of mobile 
fingers wm [µm] 

Width of fixed fingers 

wf [µm] 

Height of mobile 
fingers 

hm [µm] 

Height of fixed fingers 

hf [µm] 

Fx drive force 

[N] x*10-10 

Slope of Fz vs. z 

[Nm-1] x*10-10 

6 6 6.2 6.1 3.8848 2.7915 

7.7 7.8 7.7 7.8 5.8568 4.0328 

7.1 7.3 7.5 7.4 5.3189 3.2187 

6.1 6.1 6.2 6.1 3.9496 2.862 

7.6 7.7 7.8 7.9 5.8543 3.7876 

7.7 7.7 7.8 7.8 5.8491 3.702 

7.6 7.8 7.7 7.8 5.8385 3.5745 

7.1 7.2 7.5 7.4 5.3614 3.2781 

7.5 7.7 7.7 7.8 5.7529 3.4235 

7.7 7.8 7.7 7.8 5.7975 3.5168 



CONCLUSION 

While there have been significant improvements in the capabilities in 
the area of MO design, the uptake by industrial designers has been 
somewhat limited. There are, possibly, two reasons for this. 

The first is that the evidence, at the industrial level, that computer-
based optimisation processes can actually enhance a designer’s 
ability to create a better product has been lacking. 

The second relates to the fact that most optimisation packages 
currently available only handle a single objective and a limited 
number of design variables. 

In fact, suitable optimisation systems, with  no restriction in the size of 
the design space to be explored, and with simple and flexible 
expressions of objectives and constraints, would help match the 
needs of the designer. 

P. Di Barba, Multiobjective Shape Design in Electricity and Magnetism, Springer, 2010. 


