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Outline

• The field equations

• Representing surfaces

• One-Dimensional finite elements

• Two-Dimensional finite elements

• A physical interpretation of the matrix
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The Field Equations

• Electromagnetic system 
performance is 
described by Maxwell’s 
Equations:

• Note that these 
equations say nothing 
about relationships 
between B and H or E
and J
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Materials

• Materials – or rather 

their physical properties 

– create the links 

between the fields..

• The Constitutive 

Relationships:

ED

EJ

HB













Permeability

Conductivity

Permittivity

Pavia 2015 5

CEMLab McGill University

Materials

• Thus a high permeability will create a large local 

magnetic flux from a magnetic field..

• Materials are used to control the shape of 

magnetic and electric fields…

• Basic constants:
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Material Permeability

M19 Magnetization Curve
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Low Frequency Magnetics (1)

• Consider a situation in which f=0, i.e. statics:
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Maxwell’s Equations reduce to:
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Low Frequency Magnetics (2)

• Adding in the constitutive relationship:

HB 

JB 

In two-dimensions, B has two components – the 

vector lies in the x-y plane. However, since 

0 B

A substitution of the form BA  is allowed
Pavia 2015
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Low Frequency Magnetics (3)

• This results in the “curl-curl” equation

JA 

Which reduces to JA 2

Note that A has only one component: Az , 

in two dimensions

This is Poisson’s Equation. If J=0, it is Laplace

Half the computing compared to B
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The Field as a Surface (1)

• Poisson’s equation provides a relationship 

between:

– The Field Variable, A

– The geometric position, x and y

– The material property, µ

– The electric current density, J
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The Field as a Surface (2)

• So – we have:

– A = A(x,y)

– µ = µ(x,y)

– J = J(x,y)

• A can be considered as a surface over the 

geometric space…
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The Field as a Surface (3)

The different colours 

represent the height 

of the function above 

the plane..

Pavia 2015 13

CEMLab McGill University

The Field as a Surface (4)

The output plot is a 

“response” to the input 

data:

The geometry

The excitations

Governed by Poisson’s 

Equation:

JA 2
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The Field as a Surface (5)

• Note – this is a “physical” rather than a 

“mathematical” view…

• So the problem is:

– How do we find the surface?

• Step 1:

– How can surfaces be modelled?

• Consider a one-dimensional problem…

– the “surface” is a curve e.g. the voltage distribution along 

a buried pipeline..
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A One-Dimensional Problem 

(1)
• Consider a buried 

pipeline being used to 

carry signals…

– E.g. a measurement of 

the integrity of a gas 

pipeline.

• Problem: find the 

voltage distribution
(ref: Silvester and Ferrari, Finite 

Elements for Electrical Engineers)

Buried Pipes

v

i
rdx

gdx

i+di

v + dv

Equivalent Circuit of short length, dx, of pipe.
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A One-Dimensional Problem 

(2)
• This problem has an analytical solution.. But 

we will not use that..

• In the finite element approach, the 

transmission line equations will not be solved 

directly.. (true of most f.e. approximations)

• Instead – use the physical principle that the 

voltage along the line will adjust itself to 

minimize the power loss.
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• The steps to solve this problem are:

– Express the power, W, lost in the line in terms of the 

voltage distribution, v(x):

A One-Dimensional Problem (3)

 )(xvWW 

– Subdivide the entire transmission line into K          

finite sections = elements

Pavia 2015 18



10

CEMLab McGill University

A One-Dimensional Problem (4)

Approximate the voltage v(x) using a separate set 

of approximating expressions in each element:

)()(
1

xfvxv i

M

i

i




fi are some convenient known functions (chosen in 

advance), vi are unknown coefficients (and there 

are M of them)

Express the power in each element in terms of 

fi(x) and the M undetermined coefficients, vi
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A One-Dimensional Problem (5)

Because fi are chosen in advance, they are known.

The power is thus a function of the unknowns, vi..

),...,,( 21 MvvvWW 

Introduce constraints on the MK coefficients to ensure the 

voltage is continuous from element to element.

The ensemble of elements will possess some N degrees of 

freedom, N ≤ MK.

Finally minimize the power by varying each coefficient vi in turn 

subject to the constraint that the voltage along the line must vary 

in a continuous fashion..
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A One-Dimensional Problem (6)

Ni
v

W

i

,...,1,0 




This minimization determines the coefficients and thus 

produces an approximate expression for the voltage along 

the line..

Questions:

How many elements?

What sort of approximating functions?

How are constraints introduced?

What type of minimization technique?

The answers define whole families of finite element 

methods..
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A One-Dimensional Problem (7)

• Explicit expression for 

power:

Buried Pipes

v

i
rdx

gdx

i+di

v + dv

Equivalent Circuit of short length, dx, of pipe.

Consider the section, dx.

Power entering is: viWin 

Power leaving is: ))(( diidvvWout 

Neglecting second order terms, the power lost in dx is: idvvdidW 

dx

dv

r
ivdxgdi 

1
,And
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A One-Dimensional Problem (8)

22 )(
1

dx

dv

r
gv

dx

dW


Thus the power loss per unit length is:

And the total loss for the whole line is:

dx
dx

dv

r
gvW

L
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
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0

2
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Now use piecewise-straight approximations for the voltage

distribution along the line.. i.e. assume the voltage varies linearly 

along each of the K segments (elements).. 

Note that the voltage needs to be continuous for differentiation but 

the slope does not have to be…
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A One-Dimensional Problem (8)

rk

lkrk
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lkrk
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Describe the voltage in a segment by:

Where (k) is the element, r is the right end and l the left

Element k

xl xr

vl

vr
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A One-Dimensional Problem (9)
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and
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A One-Dimensional Problem (10)

  dxvvgdx
dx
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Putting it all together:

Assume that r and g (the resistance and conductance) are constant in an element.

The power lost in an element can be expressed as:

 

dxT

dx
dx

d

dx

d
S

v

v
TgS

r
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x
iij
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ij
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
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
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


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








1
vv rl

i and j take on both 

values, r and l
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A One-Dimensional Problem (11)

lkrkk xxL )()( 
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Constructing the matrices: 

Define a normalized local coordinate:

So

Now

  )( rrll vvv 
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A One-Dimensional Problem (12)

 
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Consider S and T:
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

Independent of the 

element length

Pavia 2015 28



15

CEMLab McGill University

A One-Dimensional Problem (13)
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A One-Dimensional Problem (14)
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And the power loss in a single element is:
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A One-Dimensional Problem (15)

Now we need to look at the whole line…

l r l r l r l r l r

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1' 10'2' 3' 4' 5'

The disjoint 

segments need to 

be connected 

together and then 

their end voltages 

set up to be equal 

where they join to 

provide continuity..

Thus v3r = v6
dis = v4’

con
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A One-Dimensional Problem (16)
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l r l r l r l r l r

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1' 10'2' 3' 4' 5'

The 10 disconnected voltages are related to the 6 connected ones through:

condis CVV 
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A One-Dimensional Problem (17)

disdis

T

disdis

T

dis VMVV

Lg
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
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


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

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.  

  .

T
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T
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22
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Writing the total power as the sum of the element powers:

and

CMCM

CVMCVW

dis

T

condis

TT

con




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A One-Dimensional Problem (18)

If the resistance and conductance per unit length are the 

same for all elements and all elements are of length Le, 

the final connected matrices for the 5 element model are:





















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
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rL
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r e

T S
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A One-Dimensional Problem (19)

And, for the T matrix:

















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

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6

gL
CgC eT T
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A One-Dimensional Problem (20)

con

T

con

con

TTT

con

MVVW

VCgCCC
r

VW











 TS

1

The total power loss is:

The last step is to minimize the power loss. All the 

voltages are free to vary except one – the one at 

the source end of the pipe…

1,...,2,1,0 



Nk

v

W

k
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A One-Dimensional Problem (21)

Differentiating gives:

0
.

.

.

.

.

.

...
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
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v

v
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However, v10’ is actually fixed – it is not an unknown
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A One-Dimensional Problem (22)

Moving the known values to the right hand side gives:



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v

v

v

M

MM

MM

This equation represents exactly as many simultaneous 

algebraic equations as there are free nodes…
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Approximation Errors

• What determines the error in modelling the 

solution by finite elements?

– It depends how many elements are used…

– It depends on the shape of the curve being 

modelled…

– It depends on the functions used in an element…
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Summarize

• Divide the problem into small pieces (elements).

• Assume the field behavior over the element can be 

modeled using a linear combination of simple 

functions

• Specify the functions

• Determine the coefficients of each function by 

minimizing an expression for a physical quantity (e.g. 

energy)
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Summarize

• Join all the elements together to cover the 

complete problem domain.

• Connect equivalent points

• Minimize the global quantity

• Solve the resulting set of linear equations to 

determine the potential values everywhere.

41Pavia 2015
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Two-Dimensional Problems

• Not too many real magnetic devices can be 

modeled in one-dimension…

• Two-dimensions, i.e. x and y or r and θ, is the 

minimum for many devices.

• So, how can the method be extended to 2-D?
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Two-Dimensional Finite Elements 

(1)

• First.. What element shape should be used for two-

dimensional problems?

• In theory, any polygonal shape could be used…

• If we extend the 1-D approach, then use a linear 

shape function, i.e. linear in x and y..

cbyaxU 

This is a first order shape function..
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Note – U is an approximate solution – A is the true solution A=U if the model is 

accurate
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Two-Dimensional Finite Elements 

(2)
The function has 3 unknowns:

a,b and c

So, we need to be able to define 3 equations where 

U is defined at three points in space (x1,y1), (x2,y2), 

(x3,y3) to compute them..

So the basic shape has to have three “vertices” 

or nodes, i.e. a triangle.

This is a simplex element
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Two-Dimensional Finite Elements 

(3)

• A simplex is the simplest geometric structure 

in any particular dimension..

– In 1-D the simplex is a line

– In 2-D the simplex is a triangle

– In 3-D the simple is a tetrahedron

– …
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Two-Dimensional Finite Elements 

(4)

1 2

3Three vertices - nodes

Usually numbered in an 

anti-clockwise direction.

Linear shape function:

cbyaxU 
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Two-Dimensional Finite Elements 

(5)
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Two-Dimensional Finite Elements 

(6)

 yxxxyyyxyx
A

yxUU
i

ii

)()()(
2

1

),(

233223321

3

1










Rewriting:

αi is known as a position function

Obtained by a cyclic rotation of the subscripts…

They are interpolatory functions, i.e.

jiyx

jiyx

jji

jji





1),(

0),(




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Two-Dimensional Finite Elements 

(7)










UdSUW

UU

e

i

ii
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The energy in an element can now be defined:

Giving:

jj

i j
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e UdSUW   
 

3

1

3

1
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Two-Dimensional Finite Elements 

(8)

dSS ji

e

ij   
)(

USUW eTe )()(

2

1


 ))(())((
4

1
31231332

)(

12 xxxxyyyy
A

S e 

Writing

The energy in the element can be expressed by:

One term in the S matrix can be evaluated (the others 

are obtained by cyclical permutation of indices)
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Two-Dimensional Finite Elements 

(9)

1 2

3

4

5

6

The energy in the 

system is given by the 

sum of the element 

energies:


e

eWW )(
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Two-Dimensional Finite Elements 

(10)

As in 1-D, the elements must be 

joined to impose continuity…

A Connection matrix can be 

created and the nodes 

renumbered

1 2

3

4

5

6
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Two-Dimensional Finite Elements 

(11)
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S

For the two elements, the combined S matrix is:

As before, the solution of the field problem requires 

the minimization of stored energy

0




kU

W
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Two-Dimensional Finite Elements 

(12)

The solution to this problem is trivial, i.e. U=0, if 

there are no prescribed boundary values…

If some boundary potentials are fixed, then the U

vector can be divided into Uf (free) and Up

(prescribed). If the free nodes are numbered 

first:
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Two-Dimensional Finite Elements 

(13)

This results in:

 

pfpfff

p

f

fpff

USUS

U

U
SS











0

Solving for Uf results in a solution to the problem
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i.e. U is approximately equal to A
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Error Estimation

02  u

0




n

u

Consider a two-dimensional problem governed by 

Laplace’s equation:

u=0

u=100

It is driven by the boundary values:

Either u=uspec on conductor surfaces

Or                 on symmetry planes.

The stored energy is:   udSuuW
2

1
)(
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Error Estimation

Assume that u(x,y) is the true solution to the problem while 

h(x,y) is a sufficiently differentiable function with a value of 

0 at every boundary point where u has  a specified value 

from the boundary conditions..

So (u+θh) – where θ is a scalar parameter – is an 

approximate solution which has the same prescribed 

boundary conditions as u.

The energy of this approximate solution is, then:

  hdShhdSuuWhuW .5.0.)()( 2
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Two-Dimensional Finite 

Elements (14)

• How good is the solution? or Where are the errors?

– This is a piecewise linear approximation..

– The best fit for the number of elements

• The solution is EXACT at the prescribed boundary 

values (the Up).

  


 ds

n

u
hudShhWuWhuW  22 )()()(
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  


 ds

n

u
hudShhWuWhuW  22 )()()(

Two-Dimensional Finite 

Elements (15)

Error within the area

Error on the boundary

On the boundary h is zero wherever u is prescribed.

System will try to make ∂u/∂n zero in some average

sense – it will not be zero at each point…
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Two-Dimensional Finite 

Elements (16)

Within the area, the connection between elements 

ensures that the variation of u along the common 

edge is the same in both elements. 

The variation of u normal to the common edge is 

different on either side of the element – i.e. this 

variation is discontinuous (we did not impose C1

continuity on the connection)

This discontinuity can be considered an indication of 

the local error.
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Two-Dimensional Finite 

Elements (17)
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Two-Dimensional Finite 

Elements (18)

1 2

3

4

5

6

Distance along line

Value of u along line 

through elements
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Two-Dimensional Finite 

Elements (19)

• How can the accuracy be improved?

– More elements… the more elements, the better the surface 

shape can be matched..

– Change the shape functions..

– Use a higher order, e.g. a quadratic:

feydxcxybyaxU  22

Now we need 6 points to find the unknowns
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Two-Dimensional Finite 

Elements (20)

1

2 3

4

5

6

The mathematical 

development follows 

the same process as 

before.

Shape functions can be first, second, third, fourth,… order

Systems can be built to include C1 continuity..
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Two-Dimensional Finite 

Elements (21)

• What about Poisson’s equation?

– Electromagnets

• These systems have sources which are not on the 

boundaries..

JA 0

2 

Coil with current density J
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Two-Dimensional Finite 

Elements (22)
The energy related functional is:

  uJdSudSuuF 0
2

1
)( 

It can be shown that this will reach a true solution 

when minimized, the same approach as was 

taken with Laplace can be used…

The minimum of the functional occurs when 

u=A, the solution of Poisson’s equation.
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Two-Dimensional Finite 

Elements (23)
The finite element formulation proceeds as before.

The first term in the energy is just the Laplace term… 

and can be represented with the same S matrix.

Over an element, approximate the current density, J, 

in the same way as the potential:





3

1

),(
i

ii yxJJ 
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Two-Dimensional Finite 

Elements (24)

 
 

 jji

i j

i JdSAAJdS 
3

1

3

1

 dST ji

e

ij 

The source term integral is then:

  JTAAJdS eT )(

Let T be defined as:

The element “input” energy is then
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Two-Dimensional Finite 

Elements (25)

TJASAAAF TT

0
2

1
)( 

0




kA

F

Allowing for the connection of the elements, etc., the 

discretized equation for the total energy is:

pfpfff ASTJAS  0

And minimizing:

Results in the final system:
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Two-Dimensional Finite 

Elements (26)

• Inclusion of material properties

– So far the development has assumed that the materials are 

all air…

– It also assumes that the permeability is fixed

– In a real device, the permeability, µ, varies within the 

geometry and is really a function of position:

),( yx 

In this case, the permeability has to remain 

inside the curl operator…
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Two-Dimensional Finite 

Elements (27)

JA 


1

Thus the curl-curl equation is:

In this case, the stored energy now has to take 

into account the energy in the material –

represented by integrating up the B-H curve..
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Two-Dimensional Finite 

Elements (28)

M19 Magnetization Curve

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000 30000

H (A/m)

B
 (

T
)

Working point

Energy

Pavia 2015 72



37

CEMLab McGill University

Two-Dimensional Finite 

Elements (29)


B

dbHE
0

.

The energy in the material is given by:

The finite element formulation can now be 

reworked substituting for B and H with A and 

following the same process as before.

Note that since the permeability is a function of A 

now, this is a non-linear problem.
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Two-Dimensional Finite 

Elements (30)

A typical term in the S matrix is now given by:

 ))(())((
4

1
31231332

)(

12 xxxxyyyy
A

S e 


This is a linearised version.. To solve the problem, 

it requires an iterative process where the µ values 

for each element are updated as a result of each 

solution of the linear equations.

It is usual to assume that µ is constant within an 

element. 
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Interpreting the S matrix

• The terms in the S matrix have the 

dimensions of reluctance..

– In fact, this could be considered to 

describe an equivalent circuit 

representing the magnetic device..

1
S12

2

S23

3

S13
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Solving the Equations

• The resultant finite element based set of 

equations for a magnetostatic problem is 

VERY large and non-linear…

• A typical problem for an electrical machine 

may need 104 or 105 nodes..

• Two solver processes are needed:

– A LINEAR equation solver

– A NON-LINEAR process..
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Solving the Equations

• Any linear equation solver will work..

• However the system is:

– Very sparse

– Can be badly conditioned

• A direct (gaussian elimination) solver has 

approximately O(N3) complexity

– N is the number of degrees of freedom = free 

nodes.
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