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Lecture 2: The Numerical
Solution of the Field Equations

Simple Finite Elements
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! Outline

The field equations

Representing surfaces
One-Dimensional finite elements
Two-Dimensional finite elements

A physical interpretation of the matrix
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i The Field Equations
Electromagnetic system
performange is ! VxH = +%
described by Maxwell’s _oB
Equations: VxB=—n
VeD=p
Note that these VeB=0

equations say nothing
about relationships
between B and H or E
and J
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1 Materials

» Materials — or rather
their physical properties
— create the links
between the fields..

* The Constitutive Permeability
Relationships: _ ;ZH/ N
- Conductivity

Permittivity
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1 Materials

« Thus a high permeability will create a large local
magnetic flux from a magnetic field..

» Materials are used to control the shape of
magnetic and electric fields...

» Basic constants:

Permeability of free space \‘,Uo =4 .10_7 Henries/ m
=8.854-10"¥ Farads/m

Permittivity of free space -~ €o

a8 i
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1 Material Permeability
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Low Frequency Magnetics (1)

» Consider a situation in which =0, i.e. statics:

9_9
ot

Maxwell’'s Equations reduce to:
VxH=J
VxE=0
VeD=p
VeB=0
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|| Low Frequency Magnetics (2)
« Adding in the constitutive relationship:
B=uH

VxB =1

In two-dimensions, B has two components — the
vector lies in the x-y plane. However, since

VeB=0
A substitution of the form V x A =B is allowed
e (B8
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’”F" Low Frequency Magnetics (3)

* This results in the “curl-curl” equation

VxVxA=—ul

Which reducesto  V?A=—z4

This is Poisson’s Equation. If J=0, it is Laplace

Note that A has only one component: A, ,
in two dimensions Half the computing compared to B

b B8 e
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w«" The Field as a Surface (1)

» Poisson’s equation provides a relationship
between:
— The Field Variable, A
— The geometric position, x and y
— The material property, U
— The electric current density, J
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“N The Field as a Surface (2)

 So — we have:

- A=A(Xy)
— K= H(Xy)
—J=J(x,y)

« A can be considered as a surface over the
geometric space...

a8 i
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| TheField as a Surface (3)

The different colours
represent the height
of the function above
the plane..

AN

/7\/
5y
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.| The Field as a Surface (4)

The output plot is a
“response” to the input
data:

The geometry

The excitations

Governed by Poisson’s
Equation:

VZA=—1d
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|| TheField as a Surface (5)

* Note — this is a “physical” rather than a
“mathematical” view...

S0 the problem is:
— How do we find the surface?
» Step 1:
— How can surfaces be modelled?

» Consider a one-dimensional problem...

— the “surface” is a curve e.g. the voltage distribution along
a buried pipeline..
v—\
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N A One-Dimensional Problem

 Consider a buried
pipeline being used to
carry signals...
— E.g. a measurement of

the integrity of a gas Buried Pipes
pipeline. R
 Problem: find the ] (
voltage distribution ’

(ref: Silvester and Ferrari, Finite ‘ ‘
Elements for Electrical Engineers)

Equivalent Circuit of short length, dx, of pipe.

b B8 e
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N A One-Dimensional Problem

2)

» This problem has aWon.. But
we will not use that..

* In the finite element approach, the

transmission line equations will not be solved
directly.. (true of most f.e. approximations)

* Instead — use the physical principle that the
voltage along the line will adjust itself to
minimize the power loss.
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“ﬂ%" A One-Dimensional Problem (3)

 The steps to solve this problem are:

— Express the power, W, lost in the line in terms of the
voltage distribution, v(x):

W =W {v(x)} N\}\

— Subdivide the entire transmission line into K
finite sections = elements

2

a8 i

%% CEMLab McGill University Pavia 2015 18




| A One-Dimensional Problem (4)

Approximate the voltage v(x) using a separate set
of approximating expressions in each element:

V09 =0 1,

f, are some convenient known functions (chosen in
advance), v, are unknown coefficients (and there
are M of them)

Express the power in each element in terms of
f,(x) and the M undetermined coefficients, v,

B8
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W’A One-Dimensional Problem (5)

Because f; are chosen in advance, they are known.

The power is thus a function of the unknowns, v;.. \DL
W:W(Vl,VZ,---,VM) —_—

Introduce constraints on the MK coefficients to ensure the
voltage is continuous from element to element.

The ensemble of elements will possess some N degrees of
freedom, N < MK.

Finally minimize the power by varying each coefficient v; in turn
subject to the constraint that the voltage along the line must vary
in a continuous fashion..

ke B8
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A One-Dimensional Problem (6)

oW .
—=0, 1=1...,N
v,
This minimization determines the coefficients and thus

produces an approximate expression for the voltage along
the line..

Questions:
How many elements?
What sort of approximating functions?
How are constraints introduced?
What type of minimization technique?

The answers define whole families of finite element
methods..

& B8
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'| A One-Dimensional Problem (7)

» Explicit expression for
power: I I

Consider the section, dx. ‘ ‘

Power enterlng IS: Win =Vi Equivalent Circuit of short length, dx, of pipe.

Power leaving is: W, = (V+ dVv)(i + di)

Neglecting second order terms, the power lost in dx is:

AW = vdli +idv
g dizgedxev, izt 3

r dx
i (8 i
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. A One-Dimensional Problem (8)
Thus the power loss per unit length is:

w e 1
dx r dx

)’ e
And the total loss for the whole line is:
2
L 1 (dv
W = —J. gv2 +— — X -
0 r Ldx

Now use piecewise-straight approximations for the voltage
distribution along the line.. i.e. assume the voltage varies linearly
along each of the K segments (elements)..

Note that the voltage needs to be continuous for differentiation but
the slope does not have to be...

& B8
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Describe the voltage in a segment by:

X —X X—X
_ " ()1
V= Voo T Vior

X(k)r - X(k)l X(k)r - X(k)l

Where (k) is the element, r is the right end and | the left

Vi

« ‘fixed” value

X Xr
Element k
a8 i
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! A One-Dimensional Problem (9)

Express this, for an element, as: v = ¢, (x)\/I +a, (X)\/r

X, —X
where a,(X)=—
r X
X=X
and a,(X)= '
X, =X
So the total power lost in the line is: K
W =>W,
k=1
2
X(kyr 2 1 dV
where W, =~ gv+—| — | dx
(ot r L dx
& B8
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A One-Dimensional Problem (10)

Putting it all together:
2
1 oxor( da da Xor 2
W, =—— [y, =L 4y, — dx—gkj (v +V,a, ) dx
I, oo dx dx X!

Assume that r and g (the resistance and conductance) are constant in an element.

The power lost in an element can be expressed as:

1 V
W, = _[Vlvrj{as + ng}[Vj

_ x,%ddi

x dx dx X i and j take on both
values, r and |

ij
XI'
T = \ aiajdx

i (8 i
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’”F“ A One-Dimensional Problem (11)

Constructing the matrices:
L = Xor = X1

Define a normalized local coordinate: SC — X=%
Lk
So a (5) =1-¢
o~
Now R —
V:V|a|(§)+vrar(§) ©

B8
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’”F" A One-Dimensional Problem (12)

. _ 1 v
Consider Sand T: W, :_[V|Vr —S+09,T
rk Vr
= X’%%d
q dx o dx
T =| aa.dx

Independent of the
But element length

da_dads da’L
dx d& dx dé& L,

i (8 i
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Ji&fe @r., A One-Dimensional Problem (13)

et porar]]
W, = [vv{rk kS+gkL T}{ }

[(da day . pday da, g f:“'“r“:f:(l‘g)‘fdg:*%
s=| " d¢ d¢ jéjf gf I:a,a,dng:§2d§=+%
i dé‘ déf °dé d§ 1da, da, .
T j;alaldf J.ga,a,drf] °dg df
_Ioara,df [aads E(Z‘?] deg:fol(l)zdfzﬂ
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| A One-Dimensional Problem (14)
0 +1 -1
’ S:[—l +1}
2 1
T:é{l 2}
And the power loss in a single element is:

et ([ e[t 2

"“u"‘ CEMLab McGill University Pavia 2015 30
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A One-Dimensional Problem (15)

Now we need to look at the whole line...

The disjoint

/ segments need to
1 23 45 67 89 10 be connected
together and then
1 28 45 /67 895 10 their end voltages

set up to be equal
1 > 4 5 10 where they join to

Thus vy, = vgdis =y, con

& B e
oy CEMLab McGill University Pavia 2015 31

provide continuity..

!f" A One-Dimensional Problem (16)

The 10 disconnected voltages are related to the 6 connected ones through:

A 1

V2

Vs V1‘ rl rl rl r| r
v, v,

Vs | Vs 1 23 45 67 89 10
A v,

v, Vi 1 23 45 67 89 10

Vg 1 Vio' Jeon

1 2 3 4' 5 10

A 1

v, 1
L7210 dgis L g —

Vdis CVcon

a8 i
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J":ff,

'@*. A One-Dimensional Problem (17)

Writing the total power as the sum of the element powers:

S

—+0,LT

1L1 ' S
—+0,L,T
rsz gZ 2

W =-V] . Vais = ~ViisM oV

—+ QLT
I KL O5Ls |
d T
an W=-V] C'M,CV,,
M=C"M,C
ew/ CEMLab McGill University Pavia 2015 33
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’”F" A One-Dimensional Problem (18)

If the resistance and conductance per unit length are the
same for all elements and all elements are of length L.,
the final connected matrices for the 5 element model are:

1 g -
-1 2 -1
-1 2 -1
ECTSC :i
r L.r -1 2 -1
-1 2 -1
(. _1 1 -
e (B8 i
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’”““ A One-Dimensional Problem (19)

And, for the T matrix:

1

1 41
1 41

gCTTC = 8
6 1 41
1 41
(- l 2_
~ CEMLab McGill University Pavia 2015 35

’”F" A One-Dimensional Problem (20)

The total power loss is:
W=- CImGCTSC + gCTTC)\/con
r

W=-V]

con

MVCOF'I

The last step is to minimize the power loss. All the
voltages are free to vary except one — the one at
the source end of the pipe...

oW
—=0, k=12,..,N-1
k
b B8 e
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’”““ A One-Dimensional Problem (21)

Differentiating gives:
My My, . vy
M 271 M 2'2' V2'

M 5'5' M 510 V5'
M 105! M 10'10" | _VlO' _

However, v, is actually fixed — it is not an unknown

-@h CEMLab McGill University Pavia 2015 37

’”F" A One-Dimensional Problem (22)

Moving the known values to the right hand side gives:

M 17 M 12 e Vl' -M 1'10'V10'
M 27 M 2'2" VZ' -M 2'10'V10'
M 5'5' V5' -M 5'10'V10'

This equation represents exactly as many simultaneous
algebraic equations as there are free nodes...

%% CEMLab McGill University Pavia 2015 38
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1 Approximation Errors

» What determines the error in modelling the
solution by finite elements?

— It depends how many elements are used...

— It depends on the shape of the curve being
modelled...

— It depends on the functions used in an element...

@ CEMLab McGill University Pavia 2015 39
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i Summarize

* Divide the problem into small pieces (elements).

« Assume the field behavior over the element can be
modeled using a linear combination of simple
functions

 Specify the functions

» Determine the coefficients of each function by
minimizing an expression for a physical quantity (e.g.
energy)

a8 i
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1 Summarize

ikl

« Join all the elements together to cover the
complete problem domain.

 Connect equivalent points
« Minimize the global quantity

» Solve the resulting set of linear equations to
determine the potential values everywhere.

\3&“&’ CEMLab McGill University Pavia 2015
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.| Two-Dimensional Problems

» Not too many real magnetic devices can be
modeled in one-dimension...

» Two-dimensions, i.e. x and y or r and 0, is the
minimum for many devices.

« S0, how can the method be extended to 2-D?

a8 i
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0 Two-Dimensional Finite Elements

(1)
First.. What element shape should be used for two-
dimensional problems?

In theory, any polygonal shape could be used...

If we extend the 1-D approach, then use a linear
shape function, i.e. linear in x and y..

U =ax+by+c

This is a first order shape function..

Note — U is an approximate solution — A is the true solution A=U if the model is

accurate
@ CEMLab McGill University Pavia 2015 43
¢y Two-Dimensional Finite Elements

@

The function has 3 unknowns:

a,bandc

So, we need to be able to define 3 equations where
U is defined at three points in space (X;,¥;), (X,Y>),
(X3,¥3) to compute them..

So the basic shape has to have three “vertices”
or nodes, i.e. a triangle.

This is a simplex element

\}:ﬁ’ CEMLab McGill University Pavia 2015 44
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(3)

« A simplex is the simplest geometric structure
in any particular dimension..
— In 1-D the simplex is a line
— In 2-D the simplex is a triangle
— In 3-D the simple is a tetrahedron

\pn‘:&’ CEMLab McGill University Pavia 2015 45

#  Two-Dimensional Finite Elements

Two-Dimensional Finite Elements

i " (4)

Three vertices - nodes

Usually numbered in an
anti-clockwise direction.

Linear shape function:

U=ax+by+c

"&.{‘"" CEMLab McGill University Pavia 2015 46
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Two-Dimensional Finite Elements

()

U, XY a
U, |= X, Y, | b
Us X3 Ys | C
-1
Lox oy Uy
U=l x y]1 % vy,||U,
1% ¥ [Us
* CEMLab McGill University  Pavia 2015 a7
¢y Two-Dimensional Finite Elements

= (6)

=

Rewriting:

U=3 U (x)

1
a = ﬂ{(xz)@ - X3y2) + (yz - Y3)X+(X3 - Xz)y}

a; is known as a position function
Obtained by a cyclic rotation of the subscripts...
They are interpolatory functions, i.e.

o (%, y;) =0 %]
o (%, y;) =1 i=]

b B8 e
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7y Two-Dimensional Finite Elements

)

The energy in an element can now be defined:

VU :iUiVai

i=1

W(e):%J.VUoVUdS

Giving:
© 3 3
e f—
W®=%">U,[Va eVadsu,
i=1 j=1
& B e
oy CEMLab McGill University Pavia 2015 49

¢y Two-Dimensional Finite Elements

©®)
Writing
i :jVai Vi ,dS
The energy in the element can be expressed by:
W® = %UTS‘”U

One term in the S matrix can be evaluated (the others
are obtained by cyclical permutation of indices)

Sl(ze) = ﬁ{(yz - ya)(ya - yl) + (X3 - XZ)(XI - Xs)}

b B8 e
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% Two-Dimensional Finite Elements

H

(9)

The energy in the
system is given by the

o

sum of the element 6

energies: .

W= W

e
4
1 2

& B e
e CEMLab McGill University Pavia 2015 51

¢y Two-Dimensional Finite Elements
(10)

As in 1-D, the elements must be
joined to impose continuity...

A Connection matrix can be

created and the nodes 3°
renumbered
4
1 2
e (B8 i
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i Two-Dimensional Finite Elements
1 (1)

For the two elements, the combined S matrix is:

Sy S S

Su Su+Su Su+Si Si

Sii Su+Sa Su+Se Se
0 S Sis  Sss

As before, the solution of the field problem requires
the minimization of stored energy

W _g

oU,
~ CEMLab McGill University Pavia 2015 53
¢y Two-Dimensional Finite Elements

(12)

The solution to this problem is trivial, i.e. U=0, if
there are no prescribed boundary values...

If some boundary potentials are fixed, then the U
vector can be divided into U (free) and U,
(prescribed). If the free nodes are numbered

first:
oW _ 0 I:UTUT{Sff Sfp:||:Uf:|:O
aUk [Uf]k e Spf SPP UIO
.‘ CEMLab McGill University Pavia 2015 54
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i Two-Dimensional Finite Elements
( 13)

This results in:

-

U
[Sff Sfp U 0
p

SgU; =-S,U,

p

Solving for U; results in a solution to the problem

i.e. U is approximately equal to A

& B e
oy CEMLab McGill University Pavia 2015 55

1 Error Estimation

Consider a two-dimensional problem governed by
Laplace’s equation:

Viu=0
It is driven by the boundary values: —

u:}OO

Either u=ug,.. on conductor surfaces

Or Z_u =0 on symmetry planes.
n

The stored energy is: W (u) = %J'Vu e VudS

ww/ CEMLab McGill University© D. Lowther 2015 56
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1 Error Estimation
Assume that u(x,y) is the true solution to the problem while
h(x,y) is a sufficiently differentiable function with a value of
0 at every boundary point where u has a specified value
from the boundary conditions..

So (u+6h) — where 8 is a scalar parameter — is an
approximate solution which has the same prescribed
boundary conditions as u.

The energy of this approximate solution is, then:

W (u+6h) =W (u) + 6 Vu.vhdS +0.50° [ Vh.vhds

@ CEMLab McGill University © D. Lowther 2015 57
i Two-Dimensional Finite

Elements (14)

» How good is the solution? or Where are the errors?
— This is a piecewise linear approximation..
— The best fit for the number of elements

The solution is EXACT at the prescribed boundary
values (the U,).

W (U +¢h) =W (u)+0°W (h) - 6[ hv°uds +9§h2—:ds

"&.{‘"" CEMLab McGill University Pavia 2015 58




Two-Dimensional Finite
Elements (15)

W (u+6h) =W (u) @ ejh ds +w
on

Error within the area

H

il

Error on the boundary

On the boundary h is zero wherever u is prescribed.
System will try to make du/on zero in some average
sense — it will not be zero at each point...

& B e
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i Two-Dimensional Finite
Elements (16)

Within the area, the connection between elements
ensures that the variation of u along the common
edge is the same in both elements.

The variation of u normal to the common edge is
different on either side of the element — i.e. this
variation is discontinuous (we did not impose C?!
continuity on the connection)

This discontinuity can be considered an indication of
the local error.

ke B8
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i Two-Dimensional Finite
Elements (17)

X Y
.. L.
~ CEMLab McGill University Pavia 2015 61
i Two-Dimensional Finite
W
Elements (18)
Value of u.along line
through elem
o
|
I
|
I
|
]
|
Distan long |
~ CEMLab McGill University Pavia 2015 62
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i Two-Dimensional Finite
Elements (19)

* How can the accuracy be improved?

— More elements... the more elements, the better the surface
shape can be matched..

— Change the shape functions..
— Use a higher order, e.g. a quadratic:

U =ax® +by® +cxy +dx+ey+ f

Now we need 6 points to find the unknowns

@ CEMLab McGill University Pavia 2015 63
i Two-Dimensional Finite
Elements (20)
The mathematical 1
development follows
the same process as 4 5
before.
2
5

Shape functions can be first, second, third, fourth,... order

Systems can be built to include C? continuity..

\}:ﬁ’ CEMLab McGill University Pavia 2015 64
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i Two-Dimensional Finite
Elements (21)

* What about Poisson’s equation?

— Electromagnets

» These systems have sources which are not on the
boundaries..

VA= —1,]

Coil with current density J

\9&5’ CEMLab McGill University Pavia 2015 65

1 Two-Dimensional Finite
Elements (22)
The energy related functional is:
1
F(u)= EIVU e VudS —yOIquS

It can be shown that this will reach a true solution
when minimized, the same approach as was
taken with Laplace can be used...

The minimum of the functional occurs when
u=A, the solution of Poisson’s equation.

a8 i
ww/ CEMLab McGill University Pavia 2015 66
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i Two-Dimensional Finite
Elements (23)

The finite element formulation proceeds as before.
The first term in the energy is just the Laplace term...
and can be represented with the same S matrix.

i
i

Over an element, approximate the current density, J,
in the same way as the potential:

J :i‘]iai()" y)

B8
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1 Two-Dimensional Finite
Elements (24)

The source term integral is then:

[ AJds =§3:Zs:Ajaiajds J,
i=1 j=L

Let T be defined as:
T = Iaiade

The element “input” energy is then

j AJdS = ATT®J

T T

\}:h CEMLab McGill University  Pavia 2015

68

34



) Two-Dimensional Finite
Elements (25)

Allowing for the connection of the elements, etc., the
discretized equation for the total energy is:

F(A) =%ATSA—,uOATTJ
And minimizing:
oF _
oA,
Results in the final system:

SiAr = 1T =S A,

0

@ CEMLab McGill University  Pavia 2015 69
i Two-Dimensional Finite

Elements (26)

* Inclusion of material properties

— So far the development has assumed that the materials are
all air...

— It also assumes that the permeability is fixed

— In areal device, the permeability, u, varies within the
geometry and is really a function of position:

= pu(x,y)

In this case, the permeability has to remain
inside the curl operator...

"&.{‘"" CEMLab McGill University Pavia 2015 70
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i Two-Dimensional Finite
Elements (27)

Thus the curl-curl equation is:
V x 1 VxA=-]
Y7,

In this case, the stored energy now has to take
into account the energy in the material —
represented by integrating up the B-H curve..

B8
iy CEMLab McGill University Pavia 2015 71

i Two-Dimensional Finite
i
o Elements (28)

Working point \\Zz

Energy —1"

H (A/m)

e (B8 i
@ CEMLab McGill University Pavia 2015 72
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i Two-Dimensional Finite
Elements (29)

The energy in the material is given by:

E:_[OBH.db

The finite element formulation can now be
reworked substituting for B and H with A and
following the same process as before.

Note that since the permeability is a function of A
now, this is a non-linear problem.

& B8
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i Two-Dimensional Finite

Elements (30)

Atypical term in the S matrix is now given by:

Sl(ze) = ﬁ {(YZ - ys)(ya - yl) + (X3 - XZ)(XI - Xs)}
7
This is a linearised version.. To solve the problem,
it requires an iterative process where the pu values
for each element are updated as a result of each
solution of the linear equations.

It is usual to assume that p is constant within an
element.

T T

\}:h CEMLab McGill University Pavia 2015
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1 Interpreting the S matrix

e The terms in the S matrix have the
dimensions of reluctance..

— In fact, this could be considered to
describe an equivalent circuit

representing the magnetic device.. 3
S13 s23
1 2

S12
@ CEMLab McGill University Pavia 2015 75
e
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i Solving the Equations

 The resultant finite element based set of
equations for a magnetostatic problem is
VERY large and non-linear...

« A typical problem for an electrical machine
may need 104 or 10° nodes..

» Two solver processes are needed:
— A LINEAR equation solver
— A NON-LINEAR process..

a8 i
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1 Solving the Equations

 Any linear equation solver will work..

« However the system is:
— Very sparse
— Can be badly conditioned

« A direct (gaussian elimination) solver has
approximately O(N?) complexity

— N is the number of degrees of freedom = free
nodes.

\3&“&’ CEMLab McGill University Pavia 2015
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