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Outline

• Design and Diagnostics

• The Virtual World and Reality

• Hierarchical Design

• Optimization Issues

• Sensitivity of Performance

• Multiple Design Issues
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Design and Diagnostics

- Inverse Problems
• Frequently, in working with electromagnetic 

devices, the questions that are asked are:

– What form of device can achieve the results that 

are needed?

• E.g. the driving profile of an electric vehicle

– What has happened to the system to modify its 

behaviour?

• Fault identification in a device

• Reconstruction of an anomaly – a crack in a pipe, 

a tumour in a biological system
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Design and Diagnosis

• In design, the goals can vary:

– Find the best design possible

– Modify and existing design to improve it in some 

way

• Typical design goals:

– Minimize cost

– Generate a specific force

– Exhibit a particular terminal impedance

– …
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The Inverse Problem

• Inverse problems are characterized by:

– Small input vectors – large output vectors

– Non-unique solutions

• In general, the problem is backwards..

– E.g. forces are created as a result of an 

electromagnetic field but the question is 

• what field is needed to create a given force?
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The Design Process
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Disk rotor induction motor
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Magnetic gear – Sheffield U

magnetic - dynamic

Kais Atallah and Dave Howe 

IEEE Trans Mag, Vol. 37, No. 4, pp. 2844-2846, July 2001.
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Team 21 A Shielding Problem
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50MVA Transformer Tank
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Creating the Virtual 

Laboratory
• Models provide the virtual laboratory

• The accuracy of the model determines when 

physical structures are needed

• Different levels of “virtuality” needed – speed 

vs accuracy
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Two Branches of Development

• Modelling has advanced due to

– Increases in computational capability

– Developments in numerical analysis

– Improvements in software tools

• Tools have been developed to

– Provide fast “sizing”

– Compute “Ballpark” estimates of performance

– Generate designs with a reasonable confidence 

level
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The Virtual World and Reality

• Although we can solve problems to high 

degrees of accuracy. What does this mean?

– We solve the non-linear equations set

– The answers are only as good as the 

representations of the equations – if they are wrong 

we get a highly accurate answer to the wrong 

problem.

– How do we know that the solution models reality?
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The Virtual World and Reality

• All these results come from the creation of 

sophisticated analysis tools

– The solution to the forward problem

– The advances have been impressive but

What about design?

15Pavia 2015

CEMLab McGill University

Design Needs

• Analytical models which reduce the need for 

prototyping

• Fast and approximate – ballpark – models to 

begin the process

• More accurate models as the process develops

• When good enough - prototype
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The Design Process

• The design process is 

one of narrowing down 

the search space by 

means of a hierarchical, 

iterative process…

• At each level, the space 

is “explored” and 

“exploited”

Top Level

Large Space

Fast, Approximate Tools

Second Level

Reduced Space

More Accurate (2D) Tools

Last Level

Small Space

Accurate (3D) Tools
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The Design Process

• At the top level, the 

model needed has to be 

fast and approximate –

• At the next level, more 

complex models – fast 

but more accuracy

Top Level

Large Space

Fast, Approximate Tools

Second Level

Reduced Space

More Accurate (2D) Tools

Last Level

Small Space

Accurate (3D) Tools
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The Design Process

• At the third level, if 

necessary, a 2-D field 

solution

• Finally, if required, 

slow and complete 3-D 

field analysis for high 

accuracy

Top Level

Large Space

Fast, Approximate Tools

Second Level

Reduced Space

More Accurate (2D) Tools

Last Level

Small Space

Accurate (3D) Tools
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The Design Process

• The issue:

– What level of accuracy 

is needed before 

moving to a physical 

prototype?

• Examine the 

requirements and the 

tools

Top Level

Large Space

Fast, Approximate Tools

Second Level

Reduced Space

More Accurate (2D) Tools

Last Level

Small Space

Accurate (3D) Tools
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The Design Process

• So within the Design process, analysis tools 

are 

– Needed to verify a design 

– Needed to indicate how to modify it

• The design process moves through the analysis 

hierarchy (circuits, 2d, 3d) until the design 

solution is “good enough”…
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The Design Process

• At each level of the process, a search for the 

“best” solution takes place

• The space being modelled at the level is 

explored and a decision is made on where and 

when to move to a new level – exploit the 

knowledge.

• The search process is commonly referred to as 

“optimization”

Pavia 2015 22
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The Design Process
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The Goal of Optimization

• To find an output parameter set which matches 

a pre-specified set as closely as possible:

Forward 

Problem

Error

Input

Requirement

Output
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Requirements for Optimization

• Optimization is a process of searching an often 
unknown space for a solution which meets a 
set of performance criteria.

• Through iteration, the process “learns” as it 
proceeds

– Three questions:

• What do we mean by “optimization”

• How complex is the design (cost function) space?

• Can we exploit this learning?
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Requirements for Optimization

• So – Issues:

– The “shape” of the space 

of solutions is not known

– There may be more than 

one “optimal” solution

• Local Minima

• Global Minimum

– Constraints can affect the 

search -1.5
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Requirements for Optimization

• Choose a single point 

inside the constrained 

area..

– Based on a previous 

solution?

– Now what?

– Move in a direction to 

decrease function

• Needs gradient
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Requirements for Optimization

• Consequently, the desired optimization process 
has two components:

– Exploration 

• where is the solution likely to be?

– Exploitation 

• given a likely location is there an appropriate 
minimum there?

• How can we do this?

28Pavia 2015
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Device Optimization - Explore

• Exploration requires evaluating solutions at 

various points in the design space.

• These points can be chosen in a variety of 

ways:

– Randomly 

• Guess a possible point

– According to a set of rules

• Derived from knowledge of the surface structure
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Device Optimization - Exploit

• Exploitation uses knowledge gained about a 
region of the design space to perform a local 
search – a local improvement in the objective 
function.

• This phase can be performed in several ways

– Estimate gradients and use a conventional steepest 
descent algorithm. 

– Just guess and try to use answers to make the next 
guess better.
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Optimization Processes -

Exploitation
• A design engineer has an appreciation of how a 

change in a particular parameter will affect the device 

performance.

– In other words, he/she has a mental picture of how small 

changes in any parameter will affect each aspect of the 

desired performance

– This is a concept of sensitivity (applied locally)…

• Alternately, if no experience or models exist, random 

variations can be tried, the performance measured and 

models developed…
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Performing the Search

• The search process can be:

– Deterministic

• Needs the local gradient

• Uses steepest descent

• Can get stuck in local minima

– Stochastic

• Many evaluations of cost function

• Finds global minimum

• Often mimics physical or biological 

systems

– Evolution

– Simulated Annealing

– …

Constraint 1 Constraint 2
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Simulated 

Annealing

Performing the Search

Searching Strategies

Deterministic Stochastic

Genetic 

Algorithms

Evolutionary

SystemsDirect Transformation
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Optimization

• Ideally, this should be a guided search of the 

design space within boundaries created by 

constraints

– basically consists of a loop consisting of two 

phases

• Analysis – estimate performance

• Modification – change parameters to improve 

performance

34Pavia 2015
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Finding an “Optimal” Design

• A simple process might be described by:

– Choose a point in the design space (a particular 

combination of parameters)

– Evaluate the cost function to locate this device on the 

hypersurface representing the cost function

– Determine how to change the parameters to improve the 

value of the cost function and repeat the previous step

– Iterate until no further improvement is achieved…
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Optimization

• The key in the process is how the modification 

phase is implemented..

– The goal is to minimize a cost function which is 

constructed from the basic requirements of the 

device

– The problem is to determine in which direction to 

change the device parameters to move towards the 

minimum

36Pavia 2015
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Optimization

• The simplest method of finding the minimum (or 
maximum) of F(x) is to:

1. Guess a value for x

2. Compute F(x)

3. Compute the gradient of F with respect to x (dF/dx)

4. Move a small step in the direction of the gradient.

5. Repeat from 2 until the gradient is zero.

• The problem is finding the derivative – numerical 
solutions tend to produce the value at a point..
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Finding the Derivative

• The problem is that 

numerical solutions tend to 

produce the solution at a 

point..

– A single “design vector” is 

provided as input to the 

analysis

– The performance values 

corresponding to the input 

vector are produced.
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Finding the Derivative

• Approach 1: - Finite Difference

– The gradient of a function can be approximated by 

evaluating the function at two neighbouring points:

– This requires 2 analysis runs for each gradient evaluation 

and for each design variable.

– A lot of work! – expensive…
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Finding the Derivative

• Approach 2: - Sensitivity

– The objective function can be expressed as:

– The fields (E and H) are implicit functions of the systems 

parameters and the design variables

– To illustrate the approach, consider an optimization 

problem which is intended to achieve a specific value of 

inductance, Lt (assume a linear system).

– The inductance of the system is given by:


v

dVfF )H,E(

2

2

I

W
L 
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Sensitivity – Method 1

• If I is constant the energy, W, is:

• Where S is the coefficient matrix

• So the objective function becomes:
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Sensitivity

• For a design parameter vector, p, the gradient of 

the objective function is given by:

• To find dA/dp, consider the state equation:
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Sensitivity
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This is the system equation where λ is an adjoint variable and δf / δA

represents a set of pseudo sources (in effect magnetic currents)
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Sensitivity
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This equation holds for any term of the objective function 

that depends on A.

Thus the determination of the gradient requires the solution 

of the original system plus the adjoint system.

Note that only one adjoint system needs to be solved – it is 

independent of the number of design variables!
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Sensitivity

• This approach has reduced the number of finite element 
solutions to find the gradient to 2!

• The disadvantage is that the solution of the adjoint problem 
requires that the sources be set up carefully and that the system 
matrix is modified.

• This is often referred to as the “Discrete Design Sensitivity 
Analysis” (DDSA)
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Consider the following problem where the shape of region 2 is defined by 

its boundary, γ, and the objective function includes variations in the 

material properties, μ, and current densities, J, in the volume and the shape 

of the region in terms of its boundary.

Sensitivity – Method 2

Ω1,μ1,J1

γ

Γ0
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– As before, consider an objective function for a 

magnetostatic system:

– Note – a full description should include a function on the boundary as 

well..

– Augment the objective function:

Sensitivity
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Sensitivity
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Variational of original primary system = 0
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Sensitivity
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These terms can be set to 0 – they represent the variational of an adjoint 

system whose “sources” are magnetic currents– the same as in the DDSA 

system…
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So the final sensitivity equation becomes:

Note: Because the boundary term was ignored, this equation only considers 

variations in the properties of volumes.. 
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Sensitivity

• If the boundary integral had not been ignored, the 
resultant expression would have included the 
sensitivity to the movement of the boundaries of 
regions within the problem, i.e. shape sensitivity.

• This approach is known as “Continuum Design 
Sensitivity Analysis” – CDSA

• Unlike DDSA, it requires no modifications to the 
matrix setup for the adjoint problem – in fact the 
method used to solve the field problem is largely 
irrelevant.
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Sensitivity – at last

• We now have an approach which can compute 

objective function sensitivity to all the design 

variables with one extra solution to the problem…

• In fact, if the objective function is energy based, then 

the adjoint problem solution is the same as the 

primary solution and no extra solution is required..

• So, in some cases, the sensitivity (or gradient) of the 

objective function is free!
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Sensitivity – a comment

• The derivation can be done in several ways and it can be 
shown to be the continuum equivalent to the approach based 
on Tellegen’s theorem in circuit analysis.
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Example

• The Die Press Model (TEAM Problem 25)
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Example

55Pavia 2015
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Example

• Results:

Sensitivity Brandstatter 

et al

Takahashi 

et al

Evolution 

Strategy

R1 0.00679 0.00705 0.00658 0.00755

L2 0.0133 0.01348 0.01617 0.01571

L3 0.0140 0.01415 0.02617 0.03763

L4 0.0059 0.00502 0.01201

Note – it is not clear that this problem has a single minimum solution..
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Issues…

• The gradient driven approach assumes a 

unique minimum..

– This is an assumption on the shape of the 

hypersurface being searched

• What if there are many?
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Local Minima
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A local minimum may not be the “best” design but the 

algorithm cannot escape..
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Local Minima

• The problem is that the basic gradient driven 

approach is really just Exploitation

– It works from an initial guess and will “run 

downhill”

• To Explore, another process is needed.
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Searching amongst Multiple 

Minima
• Use a Stochastic Approach

– Choose a random starting point and evaluate the cost 

function.

– Modify each of the parameters according to the optimizer 

strategy.

– Re-evaluate the cost function.

– If the new device is better, accept it – if it is worse, try an 

alternate mutation of the starting point.

– Repeat until all changes result in a worse value of the cost 

function.
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Stochastic Optimization

• There are issues to be addressed:

– An initial set of “candidates” needs to be chosen to 

adequately cover the search space

– After an evaluation of the cost function for all 

candidates, decisions need to be made on how to 

modify each candidate to improve them within the 

local space

– The new set of candidates needs to be evaluated

This is Exploration
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Stochastic Optimization

– At some point, a set of likely localities for a 

solution has been identified – these need to be 

ranked in terms of importance

– A decision to move to an exploitation algorithm 

needs to be made – when?

• The answers to these questions result in 

families of optimization algorithms.
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Stochastic Optimization

• Note – stochastic systems rarely use gradient 

information. Instead they use strategies based on 

either random variations or the behavior of nearest 

neighbours.

• Guidelines for possible strategies (algorithms) can 

come from the natural world:

– Simulated Annealing

– Evolutionary Systems

– …
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Conclusions

• Design requires a search of the parameter 

space

• The search occurs at several levels of 

abstraction

• Each level provides a virtual environment, 

with different degrees of approximation, for 

the simulations
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Conclusions

• At each level, the search is an “optimization” 

process which includes components of 

“exploration” and “exploitation”

• The goal is to make the overall process as 

efficient as possible.
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