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Lecture 4: Real World Design 

Problems
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Outline

• The real world – Multi-Physics

• The real world – Multi-Objective

• Response Surfaces 

• Robust Design
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Multi-Physics

• The operation of all real devices includes 

multiple areas of physics…

• The connection and conversion of 

electromagnetic energy to other forms is much 

of the reason for its use:

– Electrical machines – produce mechanical outputs

– Actuators – mechanical output, vibration

– Loud speakers

– Heating
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Multi-Physics

• In some situations, the effects are not wanted 

and reduce the efficiency of the device in 

doing its designed work

• Electromagnetic fields can result in forces –

often unwanted side-effects

– Structural problems

– Vibration issues

– Acoustic noise
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Multi-Physics

• Electromagnetic fields can result in losses in 

materials – eddy currents, hysteresis, etc.

– These result in heating
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Multi-Physics

• So…

• The analysis of the performance of 

electromagnetic devices needs to consider 

other areas of physics

– Thermal

– Structural

– Plus the electrical impact is needed for the drive 

electronics, i.e. inductances and capacitances…
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Jumping Ring

Magnetic-Dynamic-Thermal
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Watch Motor

magnetic-dynamic
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Multi-Objective

• Most real world design problems involve more 

than one objective or requirement.

• E.g.

– Minimize the weight of a motor but maximize the 

efficiency

– Minimize the cost but maximize the torque 

generated

– …

• Often these requirements conflict
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Multi-Objective

• What if the design has 

more than one 

objective?

– Minimize cost

– Minimize losses

• Where is the solution?
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A Weighted Sum

• Pre-specify the choice of trade-off

– Use a weighting function

– However, the designer has to make the choice at 

the start rather than having the information to 

make an informed choice at the end.
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The Pareto Front

• Maintaining the choice leads to a Pareto Front

• Concept of a Non-Dominated Solution

– One for which a decrease in one of the functions is 

not possible without an increase in the value of one 

of the other functions
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Real World Optimization

• The fundamental specifications for an 

industrial optimization process are:

– It finds an optimal solution, (one that satisfies the 

constraints and minimizes a set of objectives)

– The process will converge to a solution in a 

minimal time

• Note that the global optimum may not be 

achievable…
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Real World Optimization

– The global optimum may 

be outside the search 

space..

• The specifications are 

in error

• The local minimum may 

be good enough

• The desired goal may 

not be achievable

Constraint 1 Constraint 2Search space
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Real World Optimization

• So not a trivial problem

– We may have constraints which rule out the 

“ideal” solution

– We don’t know what we are working with

– We may have conflicting objectives

• And

– Numerical solutions may be extremely costly to 

run so we need to run only a few…
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Real World Optimization

• Approaches

– Predict where we are going using a deterministic 

system

– “Randomly” try for improvements by using a 

“guided” stochastic search

• Fairly classical stuff

– How do we do it fast?

– The search process is a learning process
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Real World Optimization

• Any iterative process is “learning” about the 

search space..

– It is gradually constructing a model based on the 

data found so far.

– The construction of the space can be accelerated if 

something is known “a priori” about the shape

• E.g. can it be modeled with a simple quadratic?

– Leads to the concept of a “Response Surface”

Pavia 2015 18



10

CEMLab McGill University

Real World Optimization

• Is there a better way of 

figuring out the shape of 

the surface?

– Sample uniformly

– How many samples?
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Real World Optimization

• Or should they be 

randomly chosen?
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Identifying the Response 

Surface
• Any algorithm trying to find an optimal point 

has to work from what it knows of the search 
space

• It has to be able to decide where to look next

• Single points are a problem – very little 
information

• So

– Work with several points

– Work with a point but more local information
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Local Knowledge

• Limited visibility!

– Really exploits local information about the 

neighborhood of the point

– Sensitivity can provide more information

– Great if near a minimum

– What about this being a local optimum?
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Identifying the Response 

Surface
• So – how do we get more than just local 

information

• We need a view of the whole design space?

– Generate a population covering the search space

• OK – but how many – what about multiple 

parameters?

– Too many evaluations could be extremely costly
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Identifying the Response 

Surface
• Compromise

– Generate a few sample points

• Latin Hypercube

• Hammersley Sequence

– Both from Design of Experiments work

• Generate a surface fit to these points

– The surface then provides a “cheap” way of 

exploring 

• But it is probably wrong!
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Adapting the Response 

Surface
• So the surface needs to be adapted..

• Rough process:

– Sample a few points

– Construct a surface

– Estimate the position of the optimum

– Refine the surface in that area by more accurate 

evaluations
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Response Surface Modeling

• Building the surface is known as Response 
Surface Modeling or Surrogate Modeling

• Methods:

– Polynomial Models

– Radial Basis Functions

– Kriging

– Neural Networks

– Space Mapping
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Issues in Robust Design

• Real Devices are not built to the accuracy of 

computer simulations

• The sources of error are difference and, thus, 

difficult to model

• Manufacturing processes can modify material 

properties, alter geometric dimensions
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Issues in Robust Design

• Tolerances are specified on parameters

– Devices performing outside the tolerances are not 

acceptable

• This adds an extra level of complexity into the 

design of a device
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Robustness?

• Real world problems contain uncertainties

– Often expressed as manufacturing tolerances

– Property variations

– Excitation values

• Two robustness issues: the manufacturing 

issue – inherent in the device; the 

environmental issue – inherent in the lifetime 

of the device
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Robustness?

• The performance of an actual device will vary 

from a simulation prediction because of this

• The issue is “how can these uncertainties be 

included in the design process to ensure a 

minimal performance for a manufactured 

device?”
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The “Best” Design?
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Which is the best design?
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The “Best” Design?
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The Robust Optimization 

Problem
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The “Best” Design?

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700

C
o
st

 F
u

n
ct

io
n

 V
a
lu

e

Design Parameter

Depends on the tolerance specified for the design parameter, the 

distribution of the tolerance and the “yield” expected.

tolerance

A B

Specified 

maximum 

cost value

Pavia 2015 34



18

CEMLab McGill University

The Robust Optimization 

Problem
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The “Best” Design?
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The “Best” Design?
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The “Best” Design?
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The “Best” Design?
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Two Approaches

• Build the tolerance information into the 

analysis method (“A priori”)

– The output of the analysis then includes an 

uncertainty related to the solution

• Explore the objective function space around an 

“optimal” solution (“A posteriori”)

– Requires some form of estimation of the function 

space at multiple points near the optimum
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A Priori Approaches

• The parameter tolerances can be built directly 

into the cost function evaluation so that the 

optimal solution is generated with an output 

range determined by the input tolerances.

• For example, techniques based on:

– Interval mathematics

– Stochastic finite elements

Pavia 2015 41

CEMLab McGill University

A Posteriori Approaches

• Develop the concept of a region around an 

optimum point in the function space which 

contains all the possible outcomes for the real 

device

– The concept of an “Uncertainty Set”
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The Uncertainty Set

• Each parameter has a tolerance associated with 

it.

• The extreme values of the tolerances generate a 

hypervolume in the objective function space.
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The Uncertainty Set

• A larger version of the finite difference 

approach to sensitivity

• If the tolerance is uniformly distributed, the 

volume is a hypercube.

(x1, x2)

(x1+∆x1, x2+∆x2)

(x1-∆x1, x2-∆x2)

(x1-∆x1, x2+∆x2)

(x1+∆x1, x2-∆x2)
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The Uncertainty Set

• If each tolerance has a Gaussian distribution, 
the volume is a hyperellipse.

(x1, x2) (x1+∆x1, x2)(x1-∆x1, x2)

(x1, x2+∆x2)

(x1, x2-∆x2)

Both these systems require a large number of calculations at the 

vertices of the hypervolumes. This is expensive so an estimate is made 

of the worst vertex.
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• In addition, the worst value of the cost 

function may not occur at a vertex.
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Sensitivity and Robustness

• The sensitivity of the cost function at the 

optimum point to parameter variations can be 

computed using CDSA

• The second derivative of the cost function, i.e. 

the gradient of the sensitivity can be used to 

judge the robustness of the optimal point.

– The second derivative is the “gradient index”

• This information can also be used to predict 

the worst vertex.
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Treating Robust Optimisation 

as a Multi-objective Problem
• The two approaches, i.e. uncertainty set and 

the gradient index, can re-expressed as  multi-

objective problems.

• In the uncertainty set, the mean value of the 

optimum solution and the standard deviation 

can be treated as two objectives to be 

minimized.
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Treating Robust Optimisation 

as a Multi-objective Problem
• For the gradient index approach, the optimum 

value and the gradient index can be viewed as 

two objectives.

• These can then be treated with standard multi-

objective optimization algorithms
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Summary

• The concepts from the previous 3 lectures, i.e. 

simulation, models, virtual laboratories and the 

design process, have been expanded to include 

real world issues 

• Electromagnetic device design is a complex 

process involving multi-physics, conflicting 

objectives and errors in manufacturing

• Design needs to consider robustness issues in 

addition to the above.

Pavia 2015 50


