Magnetic Field Synthesis in an Open-Boundary Region Exploiting Thévenin Equivalent Conditions

Paolo DI BARBA, PhD Dept of Industrial and Information Engineering University of Pavia, Italy paolo.dibarba@unipv.it

Outline of the presentation

- Optimal shape design with Thévenin like conditions
- Conditions of equivalence
- Finite element (FE) equations of the analysis problem
- Optimal design procedure
- The H-shaped electromagnet as a benchmark
- Controlling the FE mesh

Outline of the presentation (II)

Case study: *maglev* device

Field analysis

Field synthesis

Optimisation problem

Optimisation results

Conclusion

INTRODUCTION

- When solving analysis problems in <u>electricity</u> and <u>magnetism</u> by means of finite-element (FE), often a small part of the field domain includes the region of main interest.
- Nonetheless, the analysis of the whole domain has to be performed, even in subdomains of little or no interest. In the case of repeated field analyses, like *e.g.* in design problems, the computational burden grows up.
- In (Santini and Silvester, 1996) a principle of field diakoptics was presented: the region which is not of interest is replaced by means of the generalized Thévenin theorem.
- The systematic use of Thévenin-like conditions in field analysis is now proposed as a useful method to solve optimal shape design problems.

OPTIMAL SHAPE DESIGN WITH THEVENIN-LIKE CONDITIONS

Given a field region Ω_3 , let the controlled region Ω_c , and the region Ω_d in which the design variables x are defined, belong to a subdomain Ω_2 included in Ω_3 . Moreover, let the complementary subdomain $\Omega_1 = \Omega_3 \setminus \Omega_2$ be filled in by linear materials.

Then, an optimal shape design problem defined in Ω_3 can be solved acting only on the finiteelement grid discretizing Ω_2 , after replacing Ω_1 with the corresponding Thévenin n-pole N_1 .

CONDITIONS OF EQUIVALENCE

After a cut along the common boundary Γ_{12} , the magnetic effect of Ω_1 on Ω_2 (and *vice versa*) can be restored by means of a line current source J_{12} acting along Γ_{12} *i.e.*

 $-\overline{\nabla} \cdot \left(\mu_2^{-1} \overline{\nabla} u_2\right) = J_2 + J_{12} \quad in \quad \Omega_2 \qquad \text{and} \qquad -\overline{\nabla} \cdot \left(\mu_1^{-1} \overline{\nabla} u_1\right) = J_1 - J_{12} \quad in \quad \Omega_1$ $\implies K_2 u_2 = J_2 + C_2 J_{12} \quad in \quad \Omega_2 \qquad \text{and} \qquad K_1 u_1 = J_1 - C_1 J_{12} \quad in \quad \Omega_1$

with u magnetic potential.

In particular, an equivalent domain Ω_e replacing Ω_1 can be identified which has the same line current J_{12} as Ω_1

When J_{12} is the same in both domains Ω_1 and Ω_e , the potential at the common boundary Γ_{12} is the same in $\Omega_1 U \Omega_2$ and in $\Omega_e U \Omega_2$

FINITE-ELEMENT EQUATIONS OF THE ANALYSIS PROBLEM

Г

FE model

 n_{p_2} equations for domain Ω_2 $n_T << n_{p_2}$ eq.s for Thévenin-like conditions n_T continuity equations along Γ_{12}

$$\begin{bmatrix} \mathbf{K}_2 & \mathbf{0} & -\mathbf{C}_2 \\ \mathbf{0} & \mathbf{K}_e & \mathbf{I}_{\mathbf{n}_T} \\ -\mathbf{C}_2^{\mathsf{t}} & \mathbf{I}_{\mathbf{n}_T} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u}_2 \\ \mathbf{u}_e \\ \mathbf{J}_{12} \end{bmatrix} = \begin{bmatrix} \mathbf{J}_2 \\ \mathbf{J}_e \\ \mathbf{0} \end{bmatrix}$$

Stiffness matrix and current density vector for equivalent domain Ω_e

No matrix should be explicitly inverted
$$K_e = \begin{bmatrix} C_1^t K_1^{-1} C_1 \end{bmatrix}^{-1} \qquad J_e = K_e C_1^t K_1^{-1} J_1$$

THEVENIN EQUIVALENCE FOR THE ANALYSIS PROBLEM

Stiffness matrix and current density vector for the equivalent domain Ω_e replacing domain Ω_1

$$K_{e} = \left[C_{1}^{t}K_{1}^{-1}C_{1}\right]^{-1}$$
 $J_{e} = K_{e}C_{1}^{t}K_{1}^{-1}J_{1}$

It is not necessary to invert matrix K_1 explicitly. In fact, it turns out to be

 $K_{1}^{-1}J_{1} = u_{1}|_{J_{12}=0}$ $J_{e} = K_{e}C_{1}^{t}u_{1}|_{J_{12}=0}$ $\Omega_{1} \text{ disconnected}$ $K_{1}u_{1} = C_{1}J_{12}|_{J_{1}=0,J_{12}=-1}$ $C_{1}^{t}K_{1}^{-1}C_{1} = C_{1}^{t}U(u_{1}|_{J_{1}=0,J_{12}=-1})$ $\Omega_{1} \text{ inner source free and unit outer source}$

of size (n_T, n_T) but $n_T \ll n_{p2}$

NON-LINEAR CASE

If Ω_2 incorporates a non-linear magnetic material, stiffness matrix K_2 depends on the unknown potential u_2 .

Formally, the solving system modifies as follows:

$$\left[K_{2}(u_{2})+C_{2}K_{e}C_{2}^{t}\right]u_{2}=J_{2}+C_{2}J_{e}$$

Given an initial estimate of u_2 , an iterative procedure can be started to solve the system of non-linear equations (e.g. Newton-Raphson algorithm).

OPTIMAL DESIGN PROCEDURE

OPTIMAL DESIGN PROCEDURE (II)

Tentative cost of a derivative-free opt procedure

THE H-SHAPED ELECTROMAGNET AS A BENCHMARK

The objective function, to be minimised

$$f(\xi) = \sup_{\Omega_c} |B_1(x,\xi) - B_0| + \sup_{\Omega_c} |B_2(x,\xi)| \quad , \quad x \in \Omega_c \quad , \quad \xi \in \Omega_d$$

H-SHAPED ELECTROMAGNET - RESULTS

FE MESH CONTROL

The number of nodes along the Thévenin boundary should be kept constant, and their position should be prescribed for the equivalence to be exact.

Using a commercial code of FEA the constraint of prescribed node distribution along the Thévenin boundary should be relaxed; moreover, the construction of appropriate connectivity matrices, adjusting the nodes of subdomain Ω_2 is necessary.

- When Ω_1 and Ω_2 are connected, let the common boundary Γ_{12} exhibit n_T nodes. In turn, when Ω_1 and Ω_2 are not connected, let n_{T1} (n_{T2}) be the number of nodes along the corresponding boundary of Ω_1 (Ω_2).
- In this case, a line Γ_{12} exhibiting n_T nodes can still be defined as a hinge layer between Ω_1 and Ω_2 (node mismatch).

FE MESH CONTROL (II)

The system of equations governing the FE model must be recast in matrix form as follows:

 n_T continuity eq.s along Γ_{12}

FE MESH CONTROL (III)

 K_2 stiffness matrix (n_{p2}, n_{p2}) of domain Ω_2 C_2 connectivity matrix (n_{p2}, n_{T2}) relating the n_{T2} boundary nodes of Ω_2 to the n_{p2} nodes of Ω_2 B_2 matching matrix (n_T, n_{T2}) relating the n_{T2} boundary nodes of Ω_2 to the n_{T} nodes of Γ_{12} u_2 node potential vector of domain Ω_2 J_2 nodal current density vector of domain Ω_2 K_e stiffness matrix (n_{T1}, n_{T1}) of the equivalent domain replacing Ω_1 **B**₁ matching matrix (n_T, n_{T_1}) relating the n_{T_1} boundary nodes of Ω_1 to the n_T nodes of Γ_{12} u_e node potential vector at the boundary of Ω_1 when Ω_1 and Ω_2 are connected J_e nodal current density vector of the equivalent domain replacing Ω_1 J_{12} nodal current density vector at Γ_{12} when Ω_1 and Ω_2 are connected

FE MESH CONTROL (IV)

If $n_{T1} = n_T$ and $n_{T_2} \neq n_T$, then matrix B_1 is nothing but the identity of order n_{T1} . As a consequence, the governing equation of vector potential u_2 in domain Ω_2 can be deduced in a compact form:

modified core equation for field analysis in Ω_2

CASE STUDY: A MAGLEV DEVICE

Device geometry and materials (NdFeB magnet PM, ferromagnetic field corrector FC, high-temperature supercon HTSC)

The HTS sample (48 mm times 6 mm) is supposed to be in the zero-field state; accordingly, it is modelled as a perfectly diamagnetic material.

Field diakoptics:

incorporate the excitation system of the *maglev* device (i.e. PMs and FCs) in a subregion bounded by a closed line, along which Thévenin-like conditions in terms of potential are applied.

FIELD ANALYSIS

Reduced domain Ω_2 : FE mesh (2,014 nodes, 93 Thévenin nodes) and flux lines

FIELD ANALYSIS (II)

In principle, the analysis of the magnetic field in Ω_2 is based on the Poisson's equation in terms of vector potential u, subject to non-homogeneous Dirichlet's condition

$$u = \psi(x_1, x_2)$$
 along Γ_{12}

as well as symmetry condition u = 0 along $x_1 = 0$

In the FE scheme, the nodal approximation to function $\psi\,$ is given by vector u_e , which has two contributions:

FIELD ANALYSIS (III)

In practice, the analysis of the magnetic field in Ω_2 is based on the direct solution of the FE equation

$$\left[K_{2}+C_{2}B_{2}^{t}K_{e}B_{2}C_{2}^{t}\right]u_{2}=J_{2}+C_{2}B_{2}^{t}J_{e}$$

in terms of nodal vector potential u_2 , subject to homogeneous Dirichlet's condition $u_2 = 0$ at $x_1 = 0$ (symmetry axis).

FIELD ANALYSIS (IV)

As a result of the interaction between HTS and magnets, a repulsion effect is originated. Elementary levitation force density:

$$dF_2 = JB_1 dS = J D_2 u_2 dS$$

specific current carried by the sheet modelling the magnet

derivative component D_2 acts on the elementary shape function interpolating potential u_2

FIELD SYNTHESIS

Given a sample of HTS, which is assumed to be in the zero-field state, find the magnetic field distribution such that the levitation force density, i.e. the force density F_2 acting on the HTS in the x_2 direction, is maximised.

In practice, the field synthesis problem is converted into a problem of optimal shape design, in which the dimensions of permanent magnets and field correctors are selected as design variables (six-dimensional design vector).

OPTIMISATION PROBLEM

Design vector $\xi \in \Re^6$

- ξ_1 and ξ_5 half-width and height of the central field corrector ξ_2 and ξ_6 width and height of the magnets
- ξ_3 and ξ_4 width and height of the lateral field corrector

subject to suitable bounds

Objective function $f(\xi) = |F_2(x_2,\xi)|$

An evolution strategy of lowest order, which has proven to be cost-effective and globaloptimum oriented, was used as the optimisation algorithm: a (1+1) scheme, in which the fittest individual between parent and offspring survives to the next generation.

levitation force density acting on the HTSC, to be maximised wrt $\ \xi$

OPTIMISATION RESULTS

In a typical optimisation run, the evolution of the mesh discretizing domain Ω_2 makes the number of nodes along the Thévenin boundary Γ_{12} oscillate.

History of the number of Thévenin nodes during the maximisation of the objective f (levitation force density acting on HTSC).

OPTIMISATION RESULTS (II)

Discrete-valued design variables (step equal to 1 mm).

Search tolerance at convergence: $\|\Delta \xi\| / \|\xi\| = 10^{-4}$

The maximisation of levitation force density implies to increase the permanent magnet size and modify the field corrector shape.

CONCLUSION

- Thévenin-like conditions are a useful tool to reduce the field domain when field analysis must be repeated, as in the case of synthesis problems.
- The example examined refers to magnetic field synthesis in an open-boundary domain.
- The reduced field domain can be both linear or nonlinear, while the complementary domain must be linear.
- A still critical aspect is the construction of connectivity matrices adjusting the nodes of subdomain to the Thévenin boundary.
- Suitable meshing techniques, in fact, would help improve the solution of the synthesis problem.