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INTRODUCTION 
When solving analysis problems in electricity and 

magnetism by means of finite-element (FE), often a 
small part of the field domain includes the region of 
main interest.  

Nonetheless, the analysis of the whole domain has to be 
performed, even in subdomains of little or no 
interest. In the case of repeated field analyses, like 
e.g. in design problems, the computational burden 
grows up. 

In (Santini and Silvester, 1996) a principle of field 
diakoptics was presented: the region which is not of 
interest is replaced by means of the generalized 
Thévenin theorem.  

The systematic use of Thévenin-like conditions in field 
analysis is now proposed as a useful method to solve 
optimal shape design problems. 



OPTIMAL SHAPE DESIGN 

WITH THEVENIN-LIKE CONDITIONS  

 Given  a field region  W3 ,  let the controlled region Wc , and 
the region Wd in which the design variables x are defined, 
belong to a subdomain W2 included in W3 . Moreover, let the 
complementary subdomain W1 = W3 \ W2  be filled in by linear 
materials.  

Then, an optimal shape design 
problem defined in W3 can be 
solved acting only on the finite-
element grid discretizing W2 , 
after replacing W1 with the 
corresponding Thévenin n-pole N1 . 
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CONDITIONS OF EQUIVALENCE 

When J12 is the same in both domains W1 and We , the 
potential at the common boundary G12 is the same in 

W1UW2 and in WeUW2 

with u magnetic potential. 
In particular, an equivalent domain We replacing W1 can be 
identified which has the same line current J12 as W1  

After a cut along the common boundary G12 , the magnetic 
effect of W1 on W2 (and vice versa) can be restored by means of 
a line current source J12 acting along G12 i.e. 
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FINITE-ELEMENT EQUATIONS 
OF THE ANALYSIS PROBLEM 
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eq.s for Thévenin-like conditions  

equations for domain W2  

nT continuity equations along G12  

2pn governing equations 

Stiffness matrix and current density vector for equivalent domain We 

Augmented system 

modified 
stiffness 
matrix 

modified current 
density vector 

FE model 
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THEVENIN EQUIVALENCE 
FOR THE ANALYSIS PROBLEM 
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Stiffness matrix and current density vector 
for the equivalent domain We replacing domain  W1 

It is not necessary to invert matrix K1 explicitly. 
In fact, it turns out to be 
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The only matrix to be explicitly inverted is 
of size (nT,nT) but nT << np2 
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NON-LINEAR CASE 

If  W2 incorporates a non-linear magnetic material, stiffness matrix K2 
depends on the unknown potential u2 . 
 
Formally, the solving system modifies as follows: 
   

Given an initial estimate of u2 , an iterative procedure can 
be started to solve the system of non-linear equations (e.g. 
Newton-Raphson algorithm). 
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OPTIMAL DESIGN PROCEDURE 

Derivative-free 
optimisation algorithm 

K2 , C2 , and J2 are updated 
according to the variations 
determined in W2 by the 
optimisation algorithm  

Minimum of the 
objective function 

Core equation 
for field analysis 

Arrays Ke and Je are computed 
only at the start  

Magnetic field in the 
reduced domain W2 
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OPTIMAL DESIGN PROCEDURE (II) 

Tentative cost of a derivative-free opt procedure 
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THE H-SHAPED ELECTROMAGNET 

AS A BENCHMARK  

The device 

The objective function, to be minimised 

Design variables: 
rectangular coordinates of a set of  
moving nodes discretizing the pole profile  

Prescribed induction field 
at the air gap 

 0,BB 0

      dc201 ,x,,xBsupB,xBsupf

cc

WW
WW



H-SHAPED ELECTROMAGNET - RESULTS 

Magnetic  
potential along G12  

Improved 
pole shape 
and flux lines  

History of 
the W2 mesh  

History of the 
improvement  



FE MESH CONTROL 

The number of nodes along the Thévenin boundary should be kept 
constant, and their position should be prescribed for the 
equivalence to be exact. 

Using a commercial code of FEA the constraint of prescribed node 
distribution along the Thévenin boundary should be relaxed; 
moreover, the construction of appropriate connectivity 
matrices, adjusting the nodes of subdomain  W2 is necessary.  

 

 

 

When W1 and W2 are connected, let the common boundary G12 
exhibit nT nodes. In turn, when W1 and W2 are not connected, let 
nT1 (nT2) be the number of nodes along the corresponding 
boundary of W1 (W2). 

In this case, a line G12 exhibiting nT nodes can still be defined as a 
hinge layer between W1 and W2 (node mismatch) . 

 

 



FE MESH CONTROL (II) 
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np2 eq.s in domain W2 

nT1 eq.s for Thévenin 
conditions 

nT continuity eq.s along G12 

The system of equations governing the FE model 
must be recast in matrix form as follows: 
 



K2 stiffness matrix (np2,np2) of domain W2 
C2 connectivity matrix (np2,nT2) relating the nT2 boundary nodes of W2 
 to the np2 nodes of W2 
B2 matching matrix (nT,nT2) relating the nT2 boundary nodes of W2 
 to the nT nodes of  G12 

u2 node potential vector of domain W2 
J2 nodal current density vector of domain W2 
Ke stiffness matrix (nT1,nT1) of the equivalent domain replacing W1 
B1 matching matrix  (nT,nT1) relating the  nT1 boundary nodes of W1 
 to the nT nodes of  G12 

ue node potential vector at the boundary of W1 
 when W1 and W2 are connected 
Je nodal current density vector of the equivalent domain replacing W1  
J12 nodal current density vector  at  G12 when W1 and W2 are connected 

FE MESH CONTROL (III) 
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modified core equation for field analysis in W2 

augmented stiffness matrix 

loss of sparsity 

condition number higher 
than that of K2 

If nT1 = nT and               , then matrix B1 is nothing but the identity of 
order nT1 . As a consequence, the governing equation of vector 
potential u2 in domain W2 can be deduced in a compact form: 
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FE MESH CONTROL (IV) 
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CASE STUDY: A MAGLEV  DEVICE 

Device geometry and materials 
(NdFeB magnet PM, 
ferromagnetic field corrector FC, 
high-temperature supercon HTSC)  

Field diakoptics: 
incorporate the excitation system of the maglev device (i.e. PMs and FCs) in a 
subregion bounded by a closed line, along which Thévenin–like conditions in 
terms of potential are applied. 

The HTS sample (48 mm times 6 mm) is supposed to be in the 
zero-field state; accordingly, it is modelled as a perfectly 
diamagnetic material. 

2 mm wide 
air gap 



FIELD ANALYSIS 

Complementary domain W1 : 
FE mesh (5,617 nodes, 
129 Thévenin nodes) 

Reduced domain W2 :  

FE mesh (2,014 nodes, 93 Thévenin nodes) 
and flux lines  



FIELD ANALYSIS (II) 
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In principle, the analysis of the magnetic field in W2 is based on 
the Poisson’s equation in terms of vector potential u, subject to 
non-homogeneous Dirichlet’s condition  

In the FE scheme, the nodal approximation to function      is given by 
vector ue , which has two contributions: 



no-load potential 
( W1 and W2 not connected ) 

on-load potential 
( W1 and W2 connected ) 
 

along G12 

as well as symmetry condition u = 0 along x1 = 0 



FIELD ANALYSIS (III) 

In practice, the analysis of the magnetic field in W2 is based on 
the direct solution of the FE equation 
 
 
 
 
in terms of nodal vector potential u2 , subject to homogeneous 
Dirichlet’s condition u2 = 0 at x1 = 0 (symmetry axis). 
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FIELD ANALYSIS (IV) 

As a result of the interaction 
between HTS and magnets, a 
repulsion effect is originated. 
Elementary levitation force 
density:  

dSuDJdSJBdF 2212 

specific current carried by the sheet 
modelling the magnet 

derivative component D2 acts on the elementary 
shape function interpolating potential u2 



FIELD SYNTHESIS 

Given a sample of HTS, which is assumed to be in 
the zero-field state, find the magnetic field 
distribution such that the levitation force density, 
i.e. the force density F2 acting on the HTS in the x2 
direction, is maximised. 
 

In practice, the field synthesis problem is 
converted into a problem of optimal shape design, 
in which the dimensions of permanent magnets and 
field correctors are selected as design variables 
(six-dimensional design vector ).  



OPTIMISATION PROBLEM 
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Design vector 

Objective function 

1  and  5   half-width and height of the central field corrector  
2  and  6   width and height of the magnets  
3  and  4   width and height of the lateral field corrector  

 
subject to suitable bounds 
 

6

levitation force density acting 
on the HTSC, to be maximised 
wrt   

An evolution strategy of lowest order, which 
has proven to be cost-effective and global-
optimum oriented, was used as the optimisation 
algorithm: a (1+1) scheme, in which the fittest 
individual between parent and offspring 
survives to the next generation. 
 



OPTIMISATION RESULTS 

In a typical optimisation 
run, the evolution of the 
mesh discretizing domain 
W2 makes the number of 
nodes along the Thévenin 
boundary G12 oscillate.  

History of the number of Thévenin nodes 
during the maximisation of the objective f 
(levitation force density acting on HTSC).  



Initial geometry with flux lines 
F2 = 1.833 Nmm-1 

Final geometry with flux lines 
F2 = 3.446 Nmm-1 

OPTIMISATION RESULTS (II) 
Discrete-valued design variables (step equal to 1 mm). 
 
Search tolerance at convergence:  

The maximisation of levitation force density implies to increase the 
permanent magnet size and modify the field corrector shape. 
 

410/  



CONCLUSION 

Thévenin-like conditions are a useful tool to reduce the 
field domain when field analysis must be repeated, as 
in the case of synthesis problems. 

The example examined refers to magnetic field 
synthesis in an open-boundary domain. 

The reduced field domain can be both linear or non-
linear, while the complementary domain must be 
linear. 

A still critical aspect is the construction of connectivity 
matrices adjusting the nodes of subdomain to the 
Thévenin boundary.  

Suitable meshing techniques, in fact, would help improve 
the solution of the synthesis problem.  


